High-quality unstructured volume rendering on the PC platform

For the visualization of volume data the application of transfer functions is used widely. In this area the pre-integration technique allows high quality visualizations and the application of arbitrary transfer functions. For regular grids, this approach leads to a two-dimensional pre-integration table which easily fits into texture memory. In contrast to this, unstructured meshes require a three-dimensional pre-integration table. As a consequence the available texture memory limits the resolution of the pre-integration table and the maximum local derivative of the transfer function. Discontinuity artifacts arise if the resolution of the pre-integration table is too low. This paper presents a novel approach for accurate rendering of unstructured grids using the multi-texturing capabilities of commodity PC graphics hardware. Our approach achieves high quality by reconstructing the colors and opacities of the pre-integration table using the high internal precision of the pixel shader. Since we are using standard 2D multi-texturing we are not limited in the size of the pre-integration table. By combining this approach with a hardware-accelerated calculation of the pre-integration table, we achieve both high quality visualizations and interactive classification updates.

[1]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[2]  Thomas Ertl,et al.  A two-step approach for interactive pre-integrated volume rendering of unstructured grids , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[3]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[4]  Nelson L. Max,et al.  Hierarchichal Perspective Volume Rendering using Triangle Fans , 2001, VG.

[5]  Joseph S. B. Mitchell,et al.  Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids , 1998, Comput. Graph. Forum.

[6]  Nelson L. Max,et al.  A High Accuracy Volume Renderer for Unstructured Data , 1998, IEEE Trans. Vis. Comput. Graph..

[7]  Joseph S. B. Mitchell,et al.  The Lazy Sweep Ray Casting Algorithm for Rendering Irregular Grids , 1997, IEEE Trans. Vis. Comput. Graph..

[8]  Roni Yagel,et al.  Hardware assisted volume rendering of unstructured grids by incremental slicing , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[9]  Nelson L. Max,et al.  Sorting and hardware assisted rendering for volume visualization , 1994, VVS '94.

[10]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.

[11]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[12]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[13]  Rüdiger Westermann,et al.  The VSBUFFER: visibility ordering of unstructured volume primitives by polygon drawing , 1997 .

[14]  Peter Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, SIGGRAPH 1990.

[15]  Joseph S. B. Mitchell,et al.  An exact interactive time visibility ordering algorithm for polyhedral cell complexes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[16]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000 .

[17]  Craig M. Wittenbrink CellFast: Interactive Unstructured Volume Rendering , 1999 .

[18]  Nelson L. Max,et al.  Flow volumes for interactive vector field visualization , 1993, Proceedings Visualization '93.

[19]  Jane Wilhelms,et al.  A coherent projection approach for direct volume rendering , 1991, SIGGRAPH.

[20]  Peter L. Williams Visibility-ordering meshed polyhedra , 1992, TOGS.

[21]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[22]  Nelson L. Max,et al.  A volume density optical model , 1992, VVS.