Structural and vibrational properties of solid nitromethane under high pressure by density functional theory.

The structural, vibrational, and electronic properties of solid nitromethane under hydrostatic pressure of up to 20 GPa have been studied using density functional theory. The changes of cell volume, the lattice constants, and the molecular geometry of solid nitromethane under hydrostatic loading are examined, and the bulk modulus B0 and its pressure derivative B0' are fitted from the volume-pressure relation. Our theoretical results are compared with available experiments. The change of electron band gap of nitromethane under high pressure is also discussed. Based on the optimized crystal structures, the vibrational frequencies for the internal and lattice modes of the nitromethane crystal at ambient and high pressures are computed, and the pressure-induced frequency shifts of these modes are discussed.

[1]  I. N. Sneddon,et al.  Finite Deformation of an Elastic Solid , 1954 .

[2]  R. J. Myers,et al.  Microwave Spectra, Dipole Moment, and Barrier to Internal Rotation of CH3NO2 and CD3NO2 , 1956 .

[3]  A. Cox,et al.  Microwave spectrum and structure of nitromethane , 1972 .

[4]  E. Prince,et al.  Refinement of the structure of solid nitromethane , 1980 .

[5]  A. Cox Recent microwave studies of internal rotation and molecular structure , 1983 .

[6]  Richard M. Martin,et al.  First-Principles Calculation of Stress , 1983 .

[7]  Martin,et al.  Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs. , 1985, Physical review. B, Condensed matter.

[8]  D. Schiferl,et al.  The structure of nitromethane at pressures of 0.3 to 6.0 GPa , 1985 .

[9]  F. L. Yarger,et al.  Compression of solid nitromethane to 15 GPa at 298 K , 1986 .

[10]  S. Block,et al.  Effects of pressure on the thermal decomposition kinetics and chemical reactivity of nitromethane , 1989 .

[11]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[12]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[13]  D. Cavagnat,et al.  Theoretical and spectroscopic study of asymmetric methyl rotor dynamics in gaseous partially deuterated nitromethanes , 1993 .

[14]  Y. Gupta,et al.  UV/Visible Absorption Spectra of Shocked Nitromethane and Nitromethane-Amine Mixtures up to a Pressure of 14 GPa , 1994 .

[15]  Y. Gupta,et al.  Time-resolved Raman measurements in nitromethane shocked to 140 kbar , 1994 .

[16]  J. Petitet,et al.  Phase transitions and chemical transformations of nitromethane up to 350 °C and 35 GPa , 1995 .

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[19]  Y. Gupta,et al.  Shock-Induced Chemical Changes in Neat Nitromethane: Use of Time-Resolved Raman Spectroscopy , 1997 .

[20]  Y. Gupta,et al.  Erratum to “Time-resolved molecular changes in a chemically reacting shocked energetic liquid”: [Chem. Phys. Lett. 232 (1995) 341] , 1998 .

[21]  Y. Gupta,et al.  EMISSION AND FLUORESCENCE SPECTROSCOPY TO EXAMINE SHOCK-INDUCED DECOMPOSITION IN NITROMETHANE , 1998 .

[22]  Mark E. Tuckerman,et al.  Ab initio molecular dynamics study of solid nitromethane , 1998 .

[23]  D. Fabre,et al.  Comparative Raman spectroscopy of nitromethane-h3, nitromethane-d3, and nitroethane up to 20 GPa , 1998 .

[24]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[25]  B. Rice,et al.  Molecular Packing and Molecular Dynamics Study of the Transferability of a Generalized Nitramine Intermolecular Potential to Non-Nitramine Crystals , 1999 .

[26]  Intersystem Crossings in Model Energetic Materials , 1999 .

[27]  F. Stelzer,et al.  Internal rotation dynamics of nitromethane at low temperatures , 1999 .

[28]  E. Reed,et al.  Electronic excitations in shocked nitromethane , 2000 .

[29]  B. Rice,et al.  Theoretical Studies of Solid Nitromethane , 2000 .

[30]  Hongliang He,et al.  Vibrational spectroscopy of shock-compressed nitromethane-d3 , 2001 .

[31]  Neil L. Allan,et al.  Shock Compression of Condensed Matter-2001 , 2002 .

[32]  Fan Zhang,et al.  Ab Initio Molecular Dynamics Simulations of Molecular Collisions of Nitromethane , 2002 .

[33]  P. Ranson,et al.  Low-temperature Raman spectra of nitromethane single crystals. Lattice dynamics and Davydov splittings , 2002 .

[34]  E. Kaxiras,et al.  Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies , 2002 .

[35]  C. Ambrosch-Draxl,et al.  Electronic, optical, and structural properties of oligophenylene molecular crystals under high pressure: An ab initio investigation , 2003 .

[36]  C. Ambrosch-Draxl,et al.  Ab initio study of anthracene under high pressure , 2003 .

[37]  P. Ranson,et al.  Pressure effect at room temperature on the low‐energy Raman spectra of nitromethane‐h3 and ‐d3 up to 45 GPa , 2003 .

[38]  Jijun Zhao,et al.  Elastic Properties of Molecular Crystals Using Density Functional Calculations , 2004 .

[39]  F. Gygi,et al.  Early chemistry in hot and dense nitromethane: molecular dynamics simulations. , 2004, The Journal of chemical physics.

[40]  Jijun Zhao,et al.  First-principles intermolecular binding energies in organic molecular crystals , 2004 .

[41]  G. Scuseria,et al.  An ab Initio Study of Solid Nitromethane, HMX, RDX, and CL20: Successes and Failures of DFT , 2004 .