AMMI analysis of cassava response to contrasting environments: case study of genotype by environment effect on pests and diseases, root yield, and carotenoids content in Cameroon

[1]  Nono Carine Temegne,et al.  Influence de la composition chimique du sol sur la teneur en éléments nutritifs et le rendement du manioc ( Manihot esculenta Crantz, Euphorbiaceae) dans deux zones agro-écologiques du Cameroun , 2016 .

[2]  Patrick Chiza Chikoti,et al.  Evaluation of Cassava Genotypes for Resistance to Cassava Mosaic Disease and Agronomic Traits , 2016 .

[3]  D. Miano,et al.  Whiteflies species distribution and abundance on cassava crop in different agro-ecological zones of Kenya , 2016 .

[4]  J. Ndunguru,et al.  Effect of genotype and genotype by environment interaction on total cyanide content, fresh root, and starch yield in farmer‐preferred cassava landraces in Tanzania , 2016, Food science & nutrition.

[5]  Y. Baguma,et al.  Stability of resistance to cassava brown streak disease in major agro-ecologies of Uganda , 2015 .

[6]  P. Kulakow,et al.  Linearity, Reproducibility and Comparison of iCheckTM CAROTENE with Spectrophotometer and HPLC for Evaluation of Total Carotenoids in Cassava Roots , 2015 .

[7]  K. Noerwijati,et al.  Yield and Yield Components Evaluation of Cassava (Manihot esculenta Crantz) Clones in Different Altitudes , 2015 .

[8]  H. Ishii Stability of Resistance , 2015 .

[9]  D. Zhuang,et al.  Evaluating the Marginal Land Resources Suitable for Developing Bioenergy in Asia , 2014 .

[10]  Brajendra,et al.  Genotype × environment interaction analysis for grain yield in new plant type (NPT) wheat derivatives. , 2013 .

[11]  A. C. Kundy EFFECT OF GENOTYPE x ENVIRONMENT INTERACTION ON YIELD AND YIELD COMPONENTS OF CASSAVA (Manihot esculenta Crantz) GENOTYPES IN THE SOUTHERN ZONE OF TANZANIA , 2013 .

[12]  P. Kulakow,et al.  Genotype × Environment Interaction of Mosaic Disease, Root Yields and Total Carotene Concentration of Yellow-Fleshed Cassava in Nigeria , 2012 .

[13]  G. Byju,et al.  Modeling the Response of Cassava to Fertilizers: A Site-Specific Nutrient Management Approach for Greater Tuberous Root Yield , 2012 .

[14]  R. Coe Multi-Environment Trials: An Overview , 2012 .

[15]  C. Beadle,et al.  Genetic and environmental variation in wood properties of Acacia melanoxylon , 2011, Annals of Forest Science.

[16]  J. Stuefer,et al.  The potential of plant viruses to promote genotypic diversity via genotype x environment interactions. , 2011, Annals of botany.

[17]  O. Ariyo,et al.  Genotype x Environment Interaction and Yield-Stability Analyses of Rice Grown in Tropical Inland Swamp , 2011 .

[18]  M. Akinwale Genotype X Environment Interaction and Yield Performance of 43 Improved Cassava (Manihot esculenta Crantz) Genotypes at Three Agro-climatic Zones in Nigeria , 2011 .

[19]  Z. Jalata GGE-biplot Analysis of Multi-environment Yield Trials of Barley (Hordeium vulgare L.) Genotypes in Southeastern Ethiopia Highlands , 2011 .

[20]  E. Teye,et al.  DETERMINATION OF THE DRY MATTER CONTENT OF CASSAVA (Manihot esculenta, Crantz) TUBERS USING SPECIFIC GRAVITY METHOD , 2011 .

[21]  P. Kumar,et al.  First report of the East African cassava mosaic virus -Uganda (EACMV-UG) infecting cassava ( Manihot esculenta ) in Cameroon , 2010 .

[22]  S. Boadi,et al.  Cassava yield response to sources and rates of potassium in the forest-savanna transition zone of Ghana , 2010 .

[23]  C. Egesi,et al.  Environmental stability of resistance to anthracnose and virus diseases of water yam (Dioscorea alata) , 2009 .

[24]  A. Dixon,et al.  Prospects for cassava breeding in Sub-Saharan Africa in the next decade , 2008 .

[25]  G. Ssemakula,et al.  Genotype X environment interaction, stability and agronomic performance of carotenoid-rich cassava clones , 2007 .

[26]  Weikai Yan,et al.  Biplot analysis of multi-environment trial data: Principles and applications , 2006 .

[27]  H. Ceballos,et al.  Inheritance of useful traits in cassava grown in subhumid conditions , 2006 .

[28]  R. Cooter,et al.  Strategies for controlling cassava mosaic virus disease in Africa , 2005 .

[29]  A. Dixon,et al.  Genotype x enviroment interaction effects on native cassava starch quality and potential for starch use in the commercial sector , 2005 .

[30]  J. Legg,et al.  Viruses Associated with Cassava Mosaic Disease in Senegal and Guinea Conakry , 2004 .

[31]  U. Gullberg,et al.  GROUPING LOCATIONS FOR EFFICIENT CASSAVA EVALUATION IN MALAWI , 2003, Experimental Agriculture.

[32]  Manjit S. Kang,et al.  GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists , 2002 .

[33]  Weikai Yan,et al.  Cultivar Evaluation and Mega‐Environment Investigation Based on the GGE Biplot , 2000 .

[34]  A. Dixon,et al.  Genotype x environment interaction and optimum resource allocation for yield and yield components of cassava , 2000 .

[35]  M. Hermann,et al.  Effect of G×E interaction on root yield and beta-carotene content of selected sweetpotato (Ipomoea batatas (L) Lam.) varieties and breeding clones. , 2000 .

[36]  S. Tan,et al.  Genotype × environment influence on cassava performance , 1995 .

[37]  J. Ngeve YIELD STABILITY PARAMETERS FOR COMPARING CASSAVA VARIETIES , 1994 .

[38]  S. K. Hahn,et al.  GENOTYPE X ENVIRONMENT INTERACTION STUDIES WITH CASSAVA , 1994 .

[39]  L. Manrique Growth and yield performance of cassava grown at three elevations in Hawaii , 1992 .

[40]  José Crossa,et al.  Statistical analyses of multilocation trials , 1990 .