Preventive Maintenance Models for Complex Systems

Preventive maintenance (PM) of repairable systems can be very beneficial in reducing repair and replacement costs, and in improving system availability, by reducing the need for corrective maintenance (CM). Strategies for scheduling PM are often based on intuition and experience, though considerable improvements in performance can be achieved by fitting mathematical models to observed data; see Handlarski (1980), Dagpunar and Jack (1993) and Percy and Kobbacy (2000) for example.

[1]  S. K. Srinivasan,et al.  Stochastic Point Processes , 1978 .

[2]  Süleyman Özekici,et al.  Reliability and Maintenance of Complex Systems , 2010, NATO ASI Series.

[3]  Martin Crowder,et al.  Statistical Analysis of Reliability Data , 1991 .

[4]  A. Jardine,et al.  Modelling repairable system reliability with explanatory variables and repair and maintenance actions , 2004 .

[5]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[6]  Laurent Doyen,et al.  Classes of imperfect repair models based on reduction of failure intensity or virtual age , 2004, Reliab. Eng. Syst. Saf..

[7]  Martin Newby Perspective on Weibull proportional-hazards models , 1994 .

[8]  Frank Van Der Duyn Schouten Maintenance Policies for Multicomponent Systems: An Overview , 1996 .

[9]  Martin Crowder,et al.  An Introduction to Stochastic Modelling , 1984 .

[10]  Rommert Dekker,et al.  How to determine maintenance frequencies for multi-component systems: a general approach , 1996 .

[11]  D. Cox Regression Models and Life-Tables , 1972 .

[12]  P. M. Anderson,et al.  Application of the weibull proportional hazards model to aircraft and marine engine failure data , 1987 .

[13]  David F. Percy,et al.  Generalized proportional intensities models for repairable systems , 2006 .

[14]  O. Bouamra,et al.  Bayesian analysis of fixed-interval preventive-maintenance models , 1998 .

[15]  Khairy A.H. Kobbacy,et al.  Using proportional-intensities models to schedule preventive-maintenance intervals , 1998 .

[16]  J. S. Dagpunar,et al.  Optimizing System Availability Under Minimal Repair with Non-Negligible Repair and Replacement Times , 1993 .

[17]  David F. Percy,et al.  Determining economical maintenance intervals , 2000 .

[18]  Khairy A.H. Kobbacy,et al.  A full history proportional hazards model for preventive maintenance scheduling , 1997 .

[19]  Harold E. Ascher,et al.  Repairable Systems Reliability: Modelling, Inference, Misconceptions and Their Causes , 1984 .

[20]  W. R. Buckland Operational Research in Maintenance , 1971 .

[21]  Harold E. Ascher Repairable Systems Reliability , 2008 .

[22]  Martin Crowder,et al.  Statistical Analysis of Reliability Data , 1991 .

[23]  D. N. P. Murthy,et al.  Two‐dimensional failure modeling with minimal repair , 2004 .

[24]  Bo Henry Lindqvist,et al.  The Trend-Renewal Process for Statistical Analysis of Repairable Systems , 2003, Technometrics.

[25]  Andrew K. S. Jardine,et al.  Composite scale modeling in the presence of censored data , 2006, Reliab. Eng. Syst. Saf..

[26]  J. Handlarski Mathematical Analysis of Preventive Maintenance Schemes , 1980 .