Penetrance estimation of Alzheimer disease in SORL1 loss-of-function variant carriers using a family-based strategy and stratification by APOE genotypes

W. M. van der Flier | D. Grozeva | O. Martinaud | R. Sims | K. Bennys | V. de la Sayette | F. Bouwman | M. Hulsman | D. Campion | C. Berr | B. Nacmias | D. Seripa | I. Jansen | B. Tijms | S. Bombois | B. Grenier‐Boley | V. Deramecourt | D. Wallon | J. Clarimón | A. Lleó | F. Etcharry-Bouyx | J. V. van Swieten | H. Hummerich | J. Bras | S. Debette | H. Holstege | A. Boland | O. Quenez | S. Rousseau | A. Richard | J. Deleuze | B. Dauriat | D. Saracino | C. Heitz | B. Cretin | N. Philippi | A. Gabelle | C. Marelli | F. Sellal | G. Nuel | P. Sánchez-Juan | E. Magnin | L. Cartz-Piver | M. Mol | I. Le Ber | N. Denning | C. Thauvin | G. Le Guyader | R. Olaso | A. Chaussenot | V. Planche | L. Koric | C. Guériot | T. Lebouvier | R. Raybould | O. Moreaud | C. Masullo | A. Meggy | R. Marshall | J. Getenet | C. Paquet | C. Charbonnier | G. Nicolas | A. Rollin-Sillaire | A. Zaréa | M. Mackowiak | E. Dionet | M. Sauvée | M. Formaglio | H. Mollion | T. Jonveaux | J. Dumurgier | S. Jurici | M. Benaiteau | J. Lagarde | Carole Roué-Jagot | A. Lemstra | F. Alarcon | C. Schramm | A. Kawalia | Pierre Anthony | L. Hamelin | B. Dufournet | Hélène-Marie Lanoiselée | Morgane Lacour | A. Maureille | P. Branger | M. Barbay | Anna-Chloé Balageas | G. Hautecloque | J. Cogez | B. Laurens | A. Dutray | C. Khoumri | B. Delpont | M. Graber | C. Crinquette | F. Démurger | C. Turpinat | N. Tesi | Sophie Haffen | P. Norsworthy | E. Genin | D. Andriuta | Alexandre Perron | C. Hourrègue | Fabienne Contégal-Callier | Salha A. Saad | O. Dols-Icardo | Nathalie Wagemann | A. Gainche-Salmon | Camille Noiray | P. Cassagnaud | Claire boutoleau Bretonnière | S. Ahmad | Lila Sirven Villaros | R. van Spaendonk | N. S. Ryan | Clémence Hardy | C. Derollez | Sophie Dautricourt | Olivier Vercruysse | M. Lathrop | L. Luckcuck | Rita Guerreiro | A. De liège | M. Doco Fenzy | Jasmine Carlier | H. Courtemanche | J. Guéniat | C. Poirsier | Gianfranco Spalleta | Daniela Pierre Sophie Anna-Chloé Guillaume Mélanie Emilie Andriuta Anthony Auriacombe Balageas Ball | Guillaume Ballan | Lea Corneille | Chloé Grégoire | Cezara Hanta | E. Milongo-Rigal | J. Nivelle | Pauline Rod-Olivieri | Camille Tisserand | Shahzad Philippe Claudine Anne Paola Femke Jose Dominique Ahmad Amouyel Berr Boland Bossu Bouwman B | M. Ikram | Clive Holmes | Jean-Charles Lambert | Philippe Amouyel | Daniela Galimberti | A. Uitterlinden | Kevin Morgan | Alfredo Ramirez | John Hardy | Yaohua Chen | S. Sorbi | Sophie Auriacombe | Patrizia Mecocci | P. Scheltens | J. Dartigues | Cornelia M. Van Duijn | P. Labauge | E. Ollagnon‐Roman | Yannick Béjot | Julie Williams | Antonio Daniele | Olivier Godefroy | Dominique Campion | M. Mannens | Serge Belliard | Sophie Mohr | P. Pástor | S. Riedel-Heller | Fernando Rivadeneira | Valérie Chauviré | J. Deleuze | S. van der Lee | Jérémie Pariente | Robert Kraaij | Jeroen G. J. van Rooij | F. Pasquier | Didier Hannequin | P. Krolak-Salmon | Stéphane Grimaldi | Richard Redon | M. Reinders | Nick C. Fox | Jonathan M. Schott | Mathieu Ceccaldi | Didier Deffond | A. Lippi | Alexandre Morin | Marie Sarazin | Marie Rafiq | E. Sistermans | Michael Wagner | M. de Verdal | Simon Mead | M. A. Ikram | Emilie Beaufils | Frédéric Blanc | G. Castelnovo | Christine Champion | Emmanuel Cognat | Philippe Couratier | Bernard Croisille | Mira Didic | Giulia Diemert | Philippe Diraison | Aude Doan | Hélène Durand | Emmanuelle Ginglinger | Amélie Leblanc | Virginie Pichon | Christophe Tomasino | L. van Damme | Alice Voilly | Paola Bossù | Hans Gille | Daoud Sie | Pieter J. de Visser

[1]  Nick C Fox,et al.  New insights into the genetic etiology of Alzheimer’s disease and related dementias , 2022, Nature Genetics.

[2]  A. Fagan,et al.  A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease , 2021, Nature Medicine.

[3]  D. Campion,et al.  Impaired SorLA maturation and trafficking as a new mechanism for SORL1 missense variants in Alzheimer disease , 2021, Acta Neuropathologica Communications.

[4]  Nick C Fox,et al.  Exome sequencing identifies novel AD-associated genes. , 2020, medRxiv.

[5]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[6]  D. Campion,et al.  SORL1 genetic variants and Alzheimer disease risk: a literature review and meta-analysis of sequencing data , 2019, Acta Neuropathologica.

[7]  G. Nuel,et al.  Non-parametric estimation of survival in age-dependent genetic disease and application to the transthyretin-related hereditary amyloidosis , 2018, PloS one.

[8]  D. Goldstein,et al.  Whole‐exome sequencing in 20,197 persons for rare variants in Alzheimer's disease , 2018, Annals of clinical and translational neurology.

[9]  Albert Hofman,et al.  The effect of APOE and other common genetic variants on the onset of Alzheimer's disease and dementia: a community-based cohort study , 2018, The Lancet Neurology.

[10]  D. Campion,et al.  Biallelic Loss of Function of SORL1 in an Early Onset Alzheimer's Disease Patient. , 2018, Journal of Alzheimer's disease : JAD.

[11]  R. Redon,et al.  Contribution to Alzheimer's disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls , 2017, Neurobiology of Aging.

[12]  Olivier Rouaud,et al.  APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases , 2017, PLoS medicine.

[13]  J. Jia,et al.  Clinical characterization of an APP mutation (V717I) in five Han Chinese families with early-onset Alzheimer's disease , 2017, Journal of the Neurological Sciences.

[14]  J. Henzen Publisher's note , 1979, Brain Research.

[15]  D. Campion,et al.  From Common to Rare Variants: The Genetic Component of Alzheimer Disease , 2016, Human Heredity.

[16]  R. Redon,et al.  SORL1 rare variants: a major risk factor for familial early-onset Alzheimer’s disease , 2016, Molecular Psychiatry.

[17]  A. Montpetit,et al.  Screening of dementia genes by whole-exome sequencing in early-onset Alzheimer disease: input and lessons , 2015, European Journal of Human Genetics.

[18]  Steven D. Edland,et al.  Elucidating molecular phenotypes caused by the SORL1 Alzheimer's disease genetic risk factor using human induced pluripotent stem cells. , 2015, Cell stem cell.

[19]  Jana Marie Schwarz,et al.  MutationTaster2: mutation prediction for the deep-sequencing age , 2014, Nature Methods.

[20]  D. Holtzman,et al.  Lysosomal Sorting of Amyloid-β by the SORLA Receptor Is Impaired by a Familial Alzheimer’s Disease Mutation , 2014, Science Translational Medicine.

[21]  Nick C Fox,et al.  Clinical and biomarker changes in dominantly inherited Alzheimer's disease. , 2012, The New England journal of medicine.

[22]  B Croisile,et al.  High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease , 2012, Molecular Psychiatry.

[23]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease: Report of the NINCDS—ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease , 2011, Neurology.

[24]  P. Bosco,et al.  APOE and Alzheimer disease: a major gene with semi-dominant inheritance , 2011, Molecular Psychiatry.

[25]  J. Morris,et al.  The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease , 2011, Alzheimer's & Dementia.

[26]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[27]  A. Levey,et al.  Loss of LR11/SORLA Enhances Early Pathology in a Mouse Model of Amyloidosis: Evidence for a Proximal Role in Alzheimer's Disease , 2008, The Journal of Neuroscience.

[28]  K. Lunetta,et al.  The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease , 2007, Nature Genetics.

[29]  L. Fratiglioni,et al.  Role of genes and environments for explaining Alzheimer disease. , 2006, Archives of general psychiatry.

[30]  B. Hyman,et al.  Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Bonaïti‐pellié,et al.  Estimating penetrance from family data using a retrospective likelihood when ascertainment depends on genotype and age of onset , 2004, Genetic epidemiology.

[32]  C. Bonaïti‐pellié,et al.  Genetic study of transthyretin amyloid neuropathies: carrier risks among French and Portuguese families , 2003, Journal of medical genetics.

[33]  G. Bedoya,et al.  Apolipoprotein Eepsilon4 modifies Alzheimer's disease onset in an E280A PS1 kindred. , 2003, Annals of neurology.

[34]  C B Begg,et al.  The lifetime risks of breast cancer in Ashkenazi Jewish carriers of BRCA1 and BRCA2 mutations. , 2001, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[35]  S. Henikoff,et al.  Predicting deleterious amino acid substitutions. , 2001, Genome research.

[36]  B. Dubois,et al.  Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. , 1999, American journal of human genetics.

[37]  M. Gail,et al.  Designing studies to estimate the penetrance of an identified autosomal dominant mutation: Cohort, case‐control, and genotyped‐proband designs , 1999, Genetic epidemiology.

[38]  C. Bonaïti‐pellié,et al.  ARCAD: A method for estimating age‐dependent disease risk associated with mutation carrier status from family data , 1995, Genetic epidemiology.

[39]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[40]  R. Elston,et al.  A general model for the genetic analysis of pedigree data. , 1971, Human heredity.