An optimal algorithm to generate extendable self-avoiding walks in arbitrary dimension

Abstract A self-avoiding walk (SAW) is extendable [Grimmett, G. R., A. E. Holroyd and Y. Peres, Extendable Self-Avoiding Walks, Ann. Inst. Henri Poincare Comb. Phys. Interact., 1 (2014), pp. 61–75, Kremer, K. and J. W. Lyklema, Indefinitely growing self-avoiding walk, Phys. Rev. Lett. 54 (1985), pp. 267–269] if it can be extended into an infinite SAW. We give a simple proof that, for every lattice, extendable SAWs admit the same connective constant as the general SAWs and we give an optimal linear algorithm to generate random extendable SAWs. Our algorithm can generate every extendable SAW in dimension 2. For dimension d > 2 , it generates only a subset of the extendable SAWs. We conjecture that this subset is “large” and has the same connective constant as the extendable SAWs. Our algorithm produces a kinetic distribution of the extendable SAWs, for which the critical exponent ν is such that ν ≈ . 57 for d = 2 , ν ≈ . 51 for d = 3 and ν ≈ . 50 for d = 4 , 5 , 6 . Keywords: self-avoiding walk, connective constant, critical exponent ν, random generation.

[1]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[2]  Mireille Bousquet-Mélou,et al.  On the Importance Sampling of Self-Avoiding Walks , 2011, Combinatorics, Probability and Computing.

[3]  Tom Kennedy A Faster Implementation of the Pivot Algorithm for Self-Avoiding Walks , 2001 .

[4]  A. Rechnitzer,et al.  A Monte Carlo study of non-trapped self-avoiding walks , 2012 .

[5]  P. G. de Gennes,et al.  Exponents for the excluded volume problem as derived by the Wilson method , 1972 .

[6]  H. Duminil-Copin,et al.  The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$ , 2010, 1007.0575.

[7]  E. J. Janse van Rensburg,et al.  Generalized atmospheric Rosenbluth methods (GARM) , 2008, 0806.3097.

[8]  Kremer,et al.  Indefinitely growing self-avoiding walk. , 1985, Physical review letters.

[9]  P. Grassberger Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000 , 1997 .

[10]  Paul J. Flory,et al.  The Configuration of Real Polymer Chains , 1949 .

[11]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[12]  H. Eugene Stanley,et al.  Kinetic Growth Walk: A New Model for Linear Polymers , 1984 .

[13]  A. Sokal,et al.  New Monte Carlo method for the self-avoiding walk , 1985 .

[14]  I. Jensen,et al.  Self-avoiding polygons on the square lattice , 1999, cond-mat/9905291.

[15]  Srecko Brlek,et al.  A linear time and space algorithm for detecting path intersection I , 2010 .

[16]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[17]  Geoffrey R. Grimmett,et al.  Extendable self-avoiding walks , 2013 .