An optimal algorithm to generate extendable self-avoiding walks in arbitrary dimension
暂无分享,去创建一个
[1] A. W. Rosenbluth,et al. MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .
[2] Mireille Bousquet-Mélou,et al. On the Importance Sampling of Self-Avoiding Walks , 2011, Combinatorics, Probability and Computing.
[3] Tom Kennedy. A Faster Implementation of the Pivot Algorithm for Self-Avoiding Walks , 2001 .
[4] A. Rechnitzer,et al. A Monte Carlo study of non-trapped self-avoiding walks , 2012 .
[5] P. G. de Gennes,et al. Exponents for the excluded volume problem as derived by the Wilson method , 1972 .
[6] H. Duminil-Copin,et al. The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$ , 2010, 1007.0575.
[7] E. J. Janse van Rensburg,et al. Generalized atmospheric Rosenbluth methods (GARM) , 2008, 0806.3097.
[8] Kremer,et al. Indefinitely growing self-avoiding walk. , 1985, Physical review letters.
[9] P. Grassberger. Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000 , 1997 .
[10] Paul J. Flory,et al. The Configuration of Real Polymer Chains , 1949 .
[11] N. Metropolis,et al. The Monte Carlo method. , 1949 .
[12] H. Eugene Stanley,et al. Kinetic Growth Walk: A New Model for Linear Polymers , 1984 .
[13] A. Sokal,et al. New Monte Carlo method for the self-avoiding walk , 1985 .
[14] I. Jensen,et al. Self-avoiding polygons on the square lattice , 1999, cond-mat/9905291.
[15] Srecko Brlek,et al. A linear time and space algorithm for detecting path intersection I , 2010 .
[16] N. Madras,et al. THE SELF-AVOIDING WALK , 2006 .
[17] Geoffrey R. Grimmett,et al. Extendable self-avoiding walks , 2013 .