Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology.

The Escherichia coli DNA architectural protein FIS activates transcription from stable RNA promoters on entry into exponential growth and also reduces the level of negative supercoiling. Here we show that such a reduction decreases the activity of the tyrT promoter but that activation by FIS rescues tyrT transcription at non-optimal superhelical densities. Additionally we show that three different "up" mutations in the tyrT core promoter either abolish or reduce the dependence of tyrT transcription on both high negative superhelicity and FIS in vivo and infer that the specific sequence organisation of the core promoter couples the control of transcription initiation by negative superhelicity and FIS. In vitro all the mutations potentiate FIS-independent untwisting of the -10 region while at the wild-type promoter FIS facilitates this step. We propose that this untwisting is a crucial limiting step in the initiation of tyrT RNA synthesis. The tyrT core promoter structure is thus optimised to combine high transcriptional activity with acute sensitivity to at least three major independent regulatory inputs: negative superhelicity, FIS and ppGpp.

[1]  J. Gralla,et al.  Interrelated effects of DNA supercoiling, ppGpp, and low salt on melting within the Escherichia coli ribosomal RNA rrnB P1 promoter , 1992, Molecular microbiology.

[2]  A. Travers,et al.  The Escherichia coli FIS protein is not required for the activation of tyrT transcription on entry into exponential growth. , 1993, The EMBO journal.

[3]  A. Lamond Supercoiling response of a bacterial tRNA gene. , 1985, The EMBO journal.

[4]  R. Gourse,et al.  E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. , 1990, The EMBO journal.

[5]  A. Lamond,et al.  Alteration of the growth-rate-dependent regulation of Escherichia coli tyrT expression by promoter mutations. , 1986, Journal of molecular biology.

[6]  C. Condon,et al.  Control of rRNA transcription in Escherichia coli. , 1995, Microbiological reviews.

[7]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[8]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[9]  A. Travers,et al.  CRP Modulates fis Transcription by Alternate Formation of Activating and Repressing Nucleoprotein Complexes* , 2001, The Journal of Biological Chemistry.

[10]  M. Leng,et al.  The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control , 1998, The EMBO journal.

[11]  L. Bosch,et al.  The mechanism of trans-activation of the Escherichia coli operon thrU(tufB) by the protein FIS. A model. , 1992, Nucleic acids research.

[12]  A. Travers,et al.  The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA , 2000, Molecular microbiology.

[13]  P. Sander,et al.  Mechanisms of upstream activation of the rrnD promoter P1 of Escherichia coli. , 1993, The Journal of biological chemistry.

[14]  A A Deev,et al.  Non-canonical sequence elements in the promoter structure. Cluster analysis of promoters recognized by Escherichia coli RNA polymerase. , 1997, Nucleic acids research.

[15]  A. Travers,et al.  FIS modulates growth phase‐dependent topological transitions of DNA in Escherichia coli , 1997, Molecular microbiology.

[16]  B. Oostra,et al.  Enhancement of ribosomal ribonucleic acid synthesis by deoxyribonucleic acid gyrase activity in Escherichia coli , 1981, Journal of bacteriology.

[17]  D. Lilley,et al.  Modulation of tyrT promoter activity by template supercoiling in vivo. , 1994, The EMBO journal.

[18]  A. Travers,et al.  DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. , 1998, Journal of molecular biology.

[19]  A. Travers,et al.  FIS and RNA polymerase holoenzyme form a specific nucleoprotein complex at a stable RNA promoter. , 1995, The EMBO journal.

[20]  H. Drew,et al.  Negative supercoiling induces spontaneous unwinding of a bacterial promoter. , 1985, The EMBO journal.

[21]  A. Lamond,et al.  Requirement for an upstream element for optimal transcription of a bacterial tRNA gene , 1983, Nature.

[22]  R. Gourse,et al.  Both fis-dependent and factor-independent upstream activation of the rrnB P1 promoter are face of the helix dependent. , 1992, Nucleic acids research.

[23]  R. Gourse,et al.  Stringent control and growth-rate-dependent control have nonidentical promoter sequence requirements. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Lamond,et al.  Genetically separable functional elements mediate the optimal expression and stringent regulation of a bacterial tRNA gene , 1985, Cell.

[25]  M. Buckle,et al.  FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the tyrT promoter. , 2002, Journal of molecular biology.

[26]  N R Cozzarelli,et al.  Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. , 1997, Genes & development.

[27]  W. Keller Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Bosch,et al.  The role of FIS in trans activation of stable RNA operons of E. coli. , 1990, The EMBO journal.

[29]  R. Gourse,et al.  A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. , 1993, Science.

[30]  R Kahmann,et al.  The E.coli fis promoter is subject to stringent control and autoregulation. , 1992, The EMBO journal.

[31]  S. Busby,et al.  Extended —10 Promoters , 1997 .

[32]  M. Buckle,et al.  FIS activates sequential steps during transcription initiation at a stable RNA promoter , 1997, The EMBO journal.

[33]  R. Gourse,et al.  DNA determinants of rRNA synthesis in E. coli: Growth rate dependent regulation, feedback inhibition, upstream activation, antitermination , 1986, Cell.

[34]  J. Gralla,et al.  All three elements of the lac ps promoter mediate its transcriptional response to DNA supercoiling. , 1987, Journal of molecular biology.

[35]  A. Lamond,et al.  Stringent control of bacterial transcription , 1985, Cell.

[36]  K. Ozato,et al.  Phosphorylation of histone H3 is functionally linked to retinoic acid receptor β promoter activation , 2002, EMBO reports.

[37]  A. Travers,et al.  A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli , 1999, Molecular microbiology.

[38]  R. Kahmann,et al.  FIS is a regulator of metabolism in Escherichia coli , 1996, Molecular microbiology.

[39]  M. Zacharias,et al.  Influence of the GCGC discriminator motif introduced into the ribosomal RNA P2‐ and tac promoter on growth‐rate control and stringent sensitivity. , 1989, The EMBO journal.

[40]  S. Sulavik,et al.  Resistance to Tuberculosis: Experimental Studies in Native and Acquired Defensive Mechanisms , 1966, The Yale Journal of Biology and Medicine.

[41]  L. Bosch,et al.  Transcription of the tRNA-tufB operon of Escherichia coli: activation, termination and antitermination. , 1987, Nucleic Acids Research.

[42]  A. Travers,et al.  Promoter Sequence for Stringent Control of Bacterial Ribonucleic Acid Synthesis , 1980, Journal of bacteriology.

[43]  M. Cashel,et al.  The stringent response , 1996 .

[44]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[45]  C. Dorman,et al.  Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function , 1994, Molecular microbiology.

[46]  C. Harley,et al.  Analysis of E. coli promoter sequences. , 1987, Nucleic acids research.

[47]  R. Kahmann,et al.  Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriophage Mu. , 1986, The Journal of biological chemistry.

[48]  P. Schimmel,et al.  Laser cross-linking of protein-nucleic acid complexes , 1991 .

[49]  R. Gourse,et al.  Regulation of rRNA Transcription Correlates with Nucleoside Triphosphate Sensing , 2001, Journal of bacteriology.

[50]  Mark Rochman,et al.  Promoter protection by a transcription factor acting as a local topological homeostat , 2002, EMBO reports.

[51]  M. Buckle,et al.  The G+C-rich discriminator region of the tyrT promoter antagonises the formation of stable preinitiation complexes. , 2000, Journal of molecular biology.

[52]  A. Travers,et al.  DNA supercoiling and transcription in Escherichia coli: The FIS connection. , 2001, Biochimie.

[53]  R. Elford,et al.  Sequence determinants for promoter strength in the leuV operon of Escherichia coli. , 1988, Gene.

[54]  A. Travers A tRNATyr promoter with an altered in vitro response to ppgpp. , 1980, Journal of molecular biology.

[55]  A. Khodursky,et al.  Topoisomerase IV is a target of quinolones in Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Gourse,et al.  Regulation of rRNA Transcription Is Remarkably Robust: FIS Compensates for Altered Nucleoside Triphosphate Sensing by Mutant RNA Polymerases at Escherichia coli rrn P1 Promoters , 2000, Journal of bacteriology.

[57]  J. Vandekerckhove,et al.  Escherichia coli host factor for site-specific DNA inversion: cloning and characterization of the fis gene. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Gourse,et al.  The transcriptional activator protein FIS: DNA interactions and cooperative interactions with RNA polymerase at the Escherichia coli rrnB P1 promoter. , 1995, Journal of molecular biology.

[59]  H. Bremer,et al.  Effects of Fis on ribosome synthesis and activity and on rRNA promoter activities in Escherichia coli. , 1996, Journal of molecular biology.

[60]  A. Novick,et al.  THE PROPERTIES OF REPRESSOR AND THE KINETICS OF ITS ACTION. , 1965, Journal of molecular biology.

[61]  J. Gralla,et al.  Function of the bacterial TATAAT −10 element as single-stranded DNA during RNA polymerase isomerization , 2001, Proceedings of the National Academy of Sciences of the United States of America.