Robust Automatic Data Decomposition Using a Modified Sparse NMF

In this paper, we address the problem of automating the partial representation from real world data with an unknown a priori structure. Such representation could be very useful for the further construction of an automatic hierarchical data model. We propose a three stage process using data normalisation and the data intrinsic dimensionality estimation as the first step. The second stage uses a modified sparse Non-negative matrix factorization (sparse NMF) algorithm to perform the initial segmentation. At the final stage region growing algorithm is applied to construct a mask of the original data. Our algorithm has a very broad range of a potential applications, we illustrate this versatility by applying the algorithm to several dissimilar data sets.

[1]  Yee Whye Teh,et al.  Learning to Parse Images , 1999, NIPS.

[2]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[3]  Jordi Vitrià,et al.  Non-negative Matrix Factorization for Face Recognition , 2002, CCIA.

[4]  Ioannis Pitas,et al.  Application of non-negative and local non negative matrix factorization to facial expression recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[5]  Christoph Schnörr,et al.  Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming , 2006, J. Mach. Learn. Res..

[6]  Paul L. Rosin,et al.  Speech-driven facial animation using a hierarchical model , 2004 .

[7]  Matthew Brand,et al.  Structure Learning in Conditional Probability Models via an Entropic Prior and Parameter Extinction , 1999, Neural Computation.

[8]  Nanning Zheng,et al.  Non-negative matrix factorization based methods for object recognition , 2004, Pattern Recognit. Lett..

[9]  Jordi Vitrià,et al.  Evaluation of distance metrics for recognition based on non-negative matrix factorization , 2003, Pattern Recognit. Lett..

[10]  Jagath C. Rajapakse,et al.  Color channel encoding with NMF for face recognition , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[11]  C. D. Meyer,et al.  Initializations for the Nonnegative Matrix Factorization , 2006 .

[12]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[13]  Nanning Zheng,et al.  Learning sparse features for classification by mixture models , 2004, Pattern Recognit. Lett..

[14]  Elisabet Golobardes,et al.  Topics in Artificial Intelligence , 2002, Lecture Notes in Computer Science.

[15]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[16]  G. Buchsbaum,et al.  Color categories revealed by non-negative matrix factorization of Munsell color spectra , 2002, Vision Research.

[17]  Jordi Vitrià,et al.  A weighted non-negative matrix factorization for local representations , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[18]  Stan Z. Li,et al.  Learning spatially localized, parts-based representation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[19]  Stan Z. Li,et al.  Learning representative local features for face detection , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[20]  Bernt Schiele,et al.  Introducing a weighted non-negative matrix factorization for image classification , 2003, Pattern Recognit. Lett..

[21]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[22]  Stefan M. Wild Seeding Non-Negative Matrix Factorizations with the Spherical K-Means Clustering , 2003 .

[23]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[24]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Paul L. Rosin,et al.  Selection of the optimal parameter value for the Isomap algorithm , 2006, Pattern Recognit. Lett..