RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES

Abstract The present state of understanding of recent work on recombination processes at semiconductor surfaces and interfaces is assessed. The derivation of the phenomenological Stevenson-Keyes expression is outlined to indicate basic mechanisms and assumptions and to provide the theoretical framework for interpreting recombination data. Trends in recombination velocities with bulk doping are shown to be an important diagnostic tool in the absence of explicit information about the surface Fermi level. The significantly greater photoluminescent efficiency of InP relative to GaAs, the improvement of photoluminescent efficiencies in GaAs by Ru treatment, and the sensitivity of the photoluminescent efficiencies of InP are all shown to be consistent with changes in the position of the surface Fermi level within the Spicer unified defect model, although alternative explanations are also possible. In general, independent measurements of the surface Fermi level by, e.g., surface photovoltage measurements could provide the necessary information to decide among alternative interpretations.

[1]  W. Shockley,et al.  Photon-Radiative Recombination of Electrons and Holes in Germanium , 1954 .

[2]  T. Kajimura Degradation mechanisms of Ga1−xAlxAs visible diode lasers , 1980 .

[3]  C. Nuese III-V alloys for optoelectronic applications , 1977 .

[4]  H. C. Casey,et al.  Evidence for low surface recombination velocity on n‐type InP , 1977 .

[5]  T. Moss,et al.  Calculated efficiencies of practical GaAs and Si solar cells including the effect of built-in electric fields , 1968 .

[6]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[7]  D. B. Holt Misfit dislocations in semiconductors , 1966 .

[8]  M. Umeno,et al.  Measurement of Diffusion Coefficient and Surface Recombination Velocity for p-InGaAsP Grown on InP , 1980 .

[9]  G. Olsen,et al.  The recombination properties of lattice‐mismatched InxGa1−xP/GaAs heterojunctions , 1977 .

[10]  H. Kressel Chapter 1 The Effect of Crystal Defects on Optoelectronic Devices , 1981 .

[11]  Adam Heller Conversion of Sunlight into Electrical Power and Photoassisted Electrolysis of Water in Photoelectrochemical Cells , 1981 .

[12]  L. Jastrzebski,et al.  Application of scanning electron microscopy to determination of surface recombination velocity: GaAs , 1975 .

[13]  D. Lang,et al.  A search for interface states in an LPE GaAs/AlxGa1−xAs heterojunction , 1977 .

[14]  Bruce A. Parkinson,et al.  Reduction of GaAs surface recombination velocity by chemical treatment , 1980 .

[15]  S. Spektor,et al.  Investigation of surface recombination on epitaxial GaAs films , 1973 .

[16]  H. Kressel,et al.  The application of heterojunction structures to optical devices , 1975 .

[17]  B. H. Schultz Surface recombination as a function of the concentration of charge carriers in the interior , 1954 .

[18]  Donald T. Stevenson,et al.  Measurements of the recombination velocity at germanium surfaces , 1954 .

[19]  C. D. Thurmond,et al.  GaAs Oxidation and the Ga‐As‐O Equilibrium Phase Diagram , 1980 .

[20]  H. Gatos,et al.  Surface photovoltage spectroscopy and surface piezoelectric effect in GaAs , 1973 .

[21]  Lionel C. Kimerling,et al.  Observation of recombination-enhanced defect reactions in semiconductors , 1974 .

[22]  I. Lindau,et al.  Unified defect model and beyond , 1980 .

[23]  R. Nelson,et al.  Interfacial recombination velocity in GaAlAs/GaAs heterostructures , 1978 .

[24]  R. Nelson Interfacial recombination in GaAlAs–GaAs heterostructures , 1978 .

[25]  A. S. Grove,et al.  Surface recombination in semiconductors , 1968 .

[26]  M. Ettenberg,et al.  Interfacial recombination at /AlGa/As/GaAs heterojunction structures , 1976 .

[27]  H. Nagai,et al.  Ambient gas influence on photoluminescence intensity from InP and GaAs cleaved surfaces , 1978 .

[28]  F. Nash,et al.  Accelerated facet erosion formation and degradation of (Al, Ga)As double-heterostructure lasers , 1980, IEEE Journal of Quantum Electronics.

[29]  A. Cho,et al.  Reduction of surface recombination current in GaAs p‐n junctions , 1979 .

[30]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[31]  H. Gerritsen,et al.  Study of surface recombination in GaAs and InP by picosecond optical techniques , 1980 .

[32]  H. Kressel Materials for Heterojunction Devices , 1980 .

[33]  A. R. Clawson,et al.  A microwave InP/SiO2 MISFET , 1978 .

[34]  J. Theeten,et al.  Ellipsometric assessment of (Ga, Al) As/GaAs epitaxial layers during their growth in an organometallic VPE system , 1979 .

[35]  Bruce A. Parkinson,et al.  Enhanced photoelectrochemical solar‐energy conversion by gallium arsenide surface modification , 1978 .

[36]  L. Meiners,et al.  Electrical properties of SiO2 and Si3N4 dielectric layers on InP , 1981 .

[37]  I. Lindau,et al.  New and unified model for Schottky barrier and III–V insulator interface states formation , 1979 .

[38]  R. J. Nelson,et al.  Minority‐carrier lifetimes and internal quantum efficiency of surface‐free GaAs , 1978 .

[39]  D. B. Wittry,et al.  Measurement of Diffusion Lengths in p‐Type Gallium Arsenide by Electron Beam Excitation , 1969 .

[40]  William Shockley,et al.  Electrons and Holes in Semiconductors , 1952 .

[41]  Charles Howard Henry,et al.  The effect of surface recombination on current in AlxGa1−xAs heterojunctions , 1978 .

[42]  H. Nagai,et al.  Surface‐treatment effect on photoluminescence of InP , 1979 .

[43]  Tohru S. Suzuki,et al.  Degradation of photoluminescence intensity caused by excitation‐enhanced oxidation of GaAs surfaces , 1977 .

[44]  Y. Pleskov,et al.  Investigation of the Germanium‐Electrolyte Interface , 1963 .

[45]  N. Holonyak,et al.  Optical phase shift measurement of carrier decay-time on thin semiconductor samples with surface losses , 1971 .