Phase-Amplitude Separation and Modeling of Spherical Trajectories

ABSTRACT The problems of analysis and modeling of spherical trajectories, that is, continuous longitudinal data on , are important in several disciplines. These problems are challenging for two reasons: (1) nonlinear geometry of and (2) the presence of phase variability in given data. This article develops a geometric framework for separating phase variability from given trajectories, leaving only the shape or the amplitude variability. The key idea is to represent each trajectory with a pair of variables, a starting point, and a transported square-root velocity curve (TSRVC), a curve in the tangent (vector) space at the starting point. The space of all such curves forms a vector bundle and the norm, along with the standard Riemannian metric on , provides a natural, warping-invariant metric on this vector bundle. This leads to an efficient algorithm for registration of trajectories, that is, phase-amplitude separation, and computational tools, such as clustering, sample means, and principal component analysis (PCA) of the two components separately. It also helps derive simple statistical models of phase-amplitude components of spherical trajectories. This comprehensive framework is demonstrated using two datasets: a set of bird-migration trajectories and a set of hurricane paths in the Atlantic ocean. Supplementary material for this article is available online.

[1]  Anuj Srivastava,et al.  Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance , 2014, 1405.0803.

[2]  I. Dryden,et al.  Shape curves and geodesic modelling , 2010 .

[3]  J. Marron,et al.  Registration of Functional Data Using Fisher-Rao Metric , 2011, 1103.3817.

[4]  Laurent Younes,et al.  Optimal matching between shapes via elastic deformations , 1999, Image Vis. Comput..

[5]  Anuj Srivastava,et al.  Fitting smoothing splines to time-indexed, noisy points on nonlinear manifolds , 2012, Image Vis. Comput..

[6]  Alice Le Brigant Computing distances and geodesics between manifold-valued curves in the SRV framework , 2016, 1601.02358.

[7]  Mark R Fuller,et al.  Migration Patterns, use of Stopover Areas, and Austral Summer Movements of Swainson's Hawks , 2011, The Condor.

[8]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[9]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[10]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[11]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[12]  P. Jupp,et al.  Fitting Smooth Paths to Spherical Data , 1987 .

[13]  Huiling Le,et al.  The Fréchet mean shape and the shape of the means , 2000, Advances in Applied Probability.

[14]  Zhengwu Zhang,et al.  Bayesian Clustering of Shapes of Curves , 2015, ArXiv.

[15]  Anuj Srivastava,et al.  Statistical shape analysis: clustering, learning, and testing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[17]  J. Ramsay,et al.  Combining Registration and Fitting for Functional Models , 2008 .

[18]  J. S. Marron,et al.  Functional Data Analysis of Amplitude and Phase Variation , 2015, 1512.03216.

[19]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[20]  G. Wahba Surface fitting with scattered noisy data on Euclidean D-space and on the sphere , 1984 .

[21]  H. Le,et al.  Video-Based Action Recognition Using Rate-Invariant Analysis of Covariance Trajectories , 2015, ArXiv.

[22]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[23]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[24]  H. Müller,et al.  Functional Convex Averaging and Synchronization for Time-Warped Random Curves , 2004 .

[25]  I. Dryden,et al.  Shape-space smoothing splines for planar landmark data , 2007 .

[26]  Marc Arnaudon,et al.  Reparameterization Invariant Metric on the Space of Curves , 2015, GSI.

[27]  Anuj Srivastava,et al.  Statistical Modeling of Curves Using Shapes and Related Features , 2012 .

[28]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  J. Marron,et al.  Statistics of time warpings and phase variations , 2014 .

[30]  D. Mumford,et al.  A Metric on Shape Space with Explicit Geodesics , 2007, 0706.4299.

[31]  Wei Wu,et al.  Generative models for functional data using phase and amplitude separation , 2012, Comput. Stat. Data Anal..

[32]  H. Müller,et al.  Pairwise curve synchronization for functional data , 2008 .

[33]  Anuj Srivastava,et al.  Functional and Shape Data Analysis , 2016 .

[34]  W. Kendall Barycentres and Hurricane Trajectories , 2014, 1406.7173.