Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling.

[1]  C. Allis,et al.  Chromatin remodeling and cancer, Part I: Covalent histone modifications. , 2007, Trends in molecular medicine.

[2]  C. Allis,et al.  DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA , 2007, Nature.

[3]  Xuetong Shen,et al.  SnapShot: Chromatin Remodeling Complexes , 2007, Cell.

[4]  L. Wallrath,et al.  Connections between epigenetic gene silencing and human disease. , 2007, Mutation research.

[5]  Xuetong Shen,et al.  INO80 subfamily of chromatin remodeling complexes. , 2007, Mutation research.

[6]  Vamsi K. Gangaraju,et al.  Mechanisms of ATP dependent chromatin remodeling. , 2007, Mutation research.

[7]  Xuetong Shen,et al.  Chromatin remodeling in DNA double-strand break repair. , 2007, Current opinion in genetics & development.

[8]  Peter A. Jones,et al.  The Epigenomics of Cancer , 2007, Cell.

[9]  H. Vogel,et al.  CHD5 Is a Tumor Suppressor at Human 1p36 , 2007, Cell.

[10]  P. Laird,et al.  Epigenetic stem cell signature in cancer , 2007, Nature Genetics.

[11]  N. Belyaev,et al.  BRG1 Chromatin Remodeling Activity Is Required for Efficient Chromatin Binding by Repressor Element 1-silencing Transcription Factor (REST) and Facilitates REST-mediated Repression* , 2006, Journal of Biological Chemistry.

[12]  M. Smerdon,et al.  Rad4–Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair , 2006, Nature Structural &Molecular Biology.

[13]  Thomas A. Milne,et al.  A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling , 2006, Nature.

[14]  Bradley R. Cairns,et al.  Chromatin remodelling: the industrial revolution of DNA around histones , 2006, Nature Reviews Molecular Cell Biology.

[15]  Clare Stirzaker,et al.  Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band , 2006, Nature Genetics.

[16]  M. Yaniv,et al.  Increased DNA Damage Sensitivity and Apoptosis in Cells Lacking the Snf5/Ini1 Subunit of the SWI/SNF Chromatin Remodeling Complex , 2006, Molecular and Cellular Biology.

[17]  J. Nichols,et al.  The NuRD component Mbd3 is required for pluripotency of embryonic stem cells , 2006, Nature Cell Biology.

[18]  S. Baylin,et al.  Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? , 2006, Nature Reviews Cancer.

[19]  Danny Reinberg,et al.  Human but Not Yeast CHD1 Binds Directly and Selectively to Histone H3 Methylated at Lysine 4 via Its Tandem Chromodomains* , 2005, Journal of Biological Chemistry.

[20]  S. Khorasanizadeh,et al.  Double chromodomains cooperate to recognize the methylated histone H3 tail , 2005, Nature.

[21]  Michael K. Coleman,et al.  A Mammalian Chromatin Remodeling Complex with Similarities to the Yeast INO80 Complex* , 2005, Journal of Biological Chemistry.

[22]  T. Xie,et al.  Stem Cell Self-Renewal Controlled by Chromatin Remodeling Factors , 2005, Science.

[23]  Masahide Takahashi,et al.  Microspherule Protein 1, Mi-2β, and RET Finger Protein Associate in the Nucleolus and Up-regulate Ribosomal Gene Transcription* , 2005, Journal of Biological Chemistry.

[24]  M. Osley,et al.  Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae , 2005, Nature.

[25]  C. Wolberger,et al.  How does the histone code work? , 2005, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[26]  K. Robertson DNA methylation and human disease , 2005, Nature Reviews Genetics.

[27]  B. Cairns,et al.  Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. , 2005, Genes & development.

[28]  Silvana Pilotti,et al.  SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. , 2005, Cancer research.

[29]  S. Gregory,et al.  Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma , 2005, Oncogene.

[30]  A. Raap,et al.  Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. , 2005, Genes & development.

[31]  S. Jackson,et al.  Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. , 2004, Molecular cell.

[32]  Barbara Hohn,et al.  Recruitment of the INO80 Complex by H2A Phosphorylation Links ATP-Dependent Chromatin Remodeling with DNA Double-Strand Break Repair , 2004, Cell.

[33]  N. Krogan,et al.  INO80 and γ-H2AX Interaction Links ATP-Dependent Chromatin Remodeling to DNA Damage Repair , 2004, Cell.

[34]  G. Benvenuto,et al.  The INO80 protein controls homologous recombination in Arabidopsis thaliana. , 2004, Molecular cell.

[35]  Anindya Dutta,et al.  Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. , 2004, Molecular cell.

[36]  Jef D Boeke,et al.  Regulated nucleosome mobility and the histone code , 2004, Nature Structural &Molecular Biology.

[37]  David L. Jaye,et al.  MTA3 and the Mi-2/NuRD Complex Regulate Cell Fate during B Lymphocyte Differentiation , 2004, Cell.

[38]  Michel Nussenzweig,et al.  H2AX: the histone guardian of the genome. , 2004, DNA repair.

[39]  M. Fukuzawa,et al.  Novel germ‐line deletion of SNF5/INI1/SMARCB1 gene in neonate presenting with congenital malignant rhabdoid tumor of kidney and brain primitive neuroectodermal tumor , 2004, Genes, chromosomes & cancer.

[40]  Naoyuki Fujita,et al.  Mi-2/NuRD: multiple complexes for many purposes. , 2004, Biochimica et biophysica acta.

[41]  J. Tamkun,et al.  Multiple roles for ISWI in transcription, chromosome organization and DNA replication. , 2004, Biochimica et biophysica acta.

[42]  Stuart H. Orkin,et al.  The SWI/SNF complex — chromatin and cancer , 2004, Nature Reviews Cancer.

[43]  C. Peterson,et al.  The SANT domain: a unique histone-tail-binding module? , 2004, Nature Reviews Molecular Cell Biology.

[44]  R. Vries,et al.  p16INK4a Is Required for hSNF5 Chromatin Remodeler-induced Cellular Senescence in Malignant Rhabdoid Tumor Cells* , 2004, Journal of Biological Chemistry.

[45]  Wei-Hua Wu,et al.  ATP-Driven Exchange of Histone H2AZ Variant Catalyzed by SWR1 Chromatin Remodeling Complex , 2004, Science.

[46]  Nevan J Krogan,et al.  INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. , 2004, Cell.

[47]  Nicholas Proudfoot,et al.  Isw1 Chromatin Remodeling ATPase Coordinates Transcription Elongation and Termination by RNA Polymerase II , 2003, Cell.

[48]  J. T. Kadonaga,et al.  Chromatin Assembly by Dna-translocating Motors , 2022 .

[49]  Carlos S. Moreno,et al.  MTA3, a Mi-2/NuRD Complex Subunit, Regulates an Invasive Growth Pathway in Breast Cancer , 2003, Cell.

[50]  F. Winston,et al.  Recent advances in understanding chromatin remodeling by Swi/Snf complexes. , 2003, Current opinion in genetics & development.

[51]  M. Kok,et al.  CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system , 2003, Oncogene.

[52]  Weidong Wang,et al.  Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. , 2003, Cancer research.

[53]  P. Badenhorst,et al.  Biological functions of the ISWI chromatin remodeling complex NURF. , 2002, Genes & development.

[54]  S. Orkin,et al.  Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. , 2002, Cancer cell.

[55]  J. Workman,et al.  Function and Selectivity of Bromodomains in Anchoring Chromatin-Modifying Complexes to Promoter Nucleosomes , 2002, Cell.

[56]  O. Delattre,et al.  A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle , 2002, Oncogene.

[57]  C. J. Barnes,et al.  A naturally occurring MTA1 variant sequesters oestrogen receptor-α in the cytoplasm , 2002, Nature.

[58]  K. Shinomiya,et al.  Chromatin remodeling factor encoded by ini1 induces G1 arrest and apoptosis in ini1-deficient cells , 2002, Oncogene.

[59]  M. Cole,et al.  BAF53 Forms Distinct Nuclear Complexes and Functions as a Critical c-Myc-Interacting Nuclear Cofactor for Oncogenic Transformation , 2002, Molecular and Cellular Biology.

[60]  W. Hörz,et al.  ATP-dependent nucleosome remodeling. , 2002, Annual review of biochemistry.

[61]  C. J. Barnes,et al.  A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. , 2002, Nature.

[62]  A. Sands,et al.  Disruption of Ini1 Leads to Peri-Implantation Lethality and Tumorigenesis in Mice , 2001, Molecular and Cellular Biology.

[63]  C. Roberts,et al.  Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[64]  F Randazzo,et al.  A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. , 2000, Molecular cell.

[65]  M. Yaniv,et al.  The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression , 2000, EMBO reports.

[66]  Alexander Kinev,et al.  BRCA1 Is Associated with a Human SWI/SNF-Related Complex Linking Chromatin Remodeling to Breast Cancer , 2000, Cell.

[67]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[68]  M. Yaniv,et al.  Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α) , 1998, The EMBO journal.

[69]  Olivier Delattre,et al.  Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer , 1998, Nature.