THE CAHN-HILLIARD EQUATION

1. Steady states. There are many two component systems in which phase separation can be induced by rapidly cooling the system. Thus, if a two component system, which is spatially uniform at temperature T1, is rapidly cooled to a second sufficiently lower temperature T2, then the cooled system will separate into regions of higher and lower concentration. A phenomenological description of the behavior of such systems can be obtained by energy arguments. The claim would be that there exists a critical temperature Tc, such that for T > Tc the free energy F (c, T ) of the system is a single welled function of the concentration c of one of the species, whereas for T < Tc the free energy is double welled. Referring to Figure 1, a system which was spatially uniform at temperature T1, when cooled to temperature T2, would find it energetically preferrable to separate itself into two systems, one at concentration cA and one at concentration cB. To be more specific consider now the system at temperature T < Tc. Assume that the free energy F (c) per unit volume (Gibbs free energy or Landau-Ginzburg free energy) of the spatially homogeneous system has the convex/concave shape indicated in Figure 2. More precisely F is concave in the spinodal interval cA < c < c s B and convex elsewhere. The points cA and cB where the supporting tangent touches the graph are sometimes referred to as the binodal points. The derivative f(c) = F (c) is depicted in Figure 3. The free energy of a spatially heterogeneous system would then be given by

[1]  John W. Cahn,et al.  Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .

[2]  Puri,et al.  Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. , 1988, Physical review. A, General physics.

[3]  J. Hyman,et al.  Digital Removal of Random Media Image Degradations by Solving the Diffusion Equation Backwards in Time , 1978 .

[4]  D. Dowson History of Tribology , 1979 .

[5]  Juncheng Wei,et al.  On the Stationary Cahn-Hilliard Equation: Interior Spike Solutions , 1998 .

[6]  Ian Smith,et al.  Introduction to Partial Differential Equations , 2006 .

[7]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[8]  Thomas Wanner,et al.  Spinodal Decomposition for the Cahn–Hilliard Equation in Higher Dimensions.¶Part I: Probability and Wavelength Estimate , 1998 .

[9]  Paul C. Fife,et al.  Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .

[10]  M. Gurtin,et al.  Structured phase transitions on a finite interval , 1984 .

[11]  James D. Murray,et al.  Spatial models and biomedical applications , 2003 .

[12]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[13]  Thomas Wanner,et al.  Spinodal Decomposition for the¶Cahn-Hilliard Equation in Higher Dimensions:¶Nonlinear Dynamics , 2000 .

[14]  G. B. McFadden,et al.  On the notion of a ξ–vector and a stress tensor for a general class of anisotropic diffuse interface models , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Edgar Knobloch,et al.  Thin liquid films on a slightly inclined heated plate , 2004 .

[16]  Harald Garcke,et al.  Transient coarsening behaviour in the Cahn–Hilliard model , 2003 .

[17]  P. Fife,et al.  Perturbation of doubly periodic solution branches with applications to the Cahn-Hilliard equation , 1997 .

[18]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[19]  M. De Handbuch der Physik , 1957 .

[20]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[21]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[22]  S. Bankoff,et al.  Long-scale evolution of thin liquid films , 1997 .

[23]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[24]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[25]  J. Eckmann,et al.  The existence of dendritic fronts , 1986 .

[26]  M. Grinfeld,et al.  Counting stationary solutions of the Cahn–Hilliard equation by transversality arguments , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  坂上 貴之 書評 Computational Homology , 2005 .

[28]  M. Hillert A theory of nucleation for solid metallic solutions , 1956 .

[29]  C. M. Elliott,et al.  Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models—I. Introduction and methodology , 1995 .

[30]  A. Nepomnyashchy,et al.  Dynamics of domain walls governed by the convective Cahn–Hilliard equation , 2005 .

[31]  J. Borwein,et al.  Techniques of variational analysis , 2005 .

[32]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[33]  Robert Finn,et al.  Equilibrium Capillary Surfaces , 1985 .

[34]  Bernd Rinn,et al.  Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions , 2001 .

[35]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .

[36]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[37]  S. Tremaine,et al.  On the Origin of Irregular Structure in Saturn's Rings , 2002, astro-ph/0211149.

[38]  Michael F. Ashby,et al.  A first report on sintering diagrams , 1973 .

[39]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[40]  Brian S. Mitchell,et al.  The Structure of Materials , 2004 .

[41]  L. Modica,et al.  Gradient theory of phase transitions with boundary contact energy , 1987 .

[42]  Gunduz Caginalp,et al.  The role of microscopic anisotropy in the macroscopic behavior of a phase boundary , 1986 .

[43]  Xinfu Chen,et al.  Global asymptotic limit of solutions of the Cahn-Hilliard equation , 1996 .

[44]  J. Troutman Variational Calculus with Elementary Convexity , 1983 .

[45]  P. Flory Principles of polymer chemistry , 1953 .

[46]  Energy methods for the Cahn−Hilliard equation , 1988 .

[47]  Peter W. Bates,et al.  The Neumann boundary problem for a nonlocal Cahn–Hilliard equation , 2005 .

[48]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[49]  John W. Cahn,et al.  Critical point wetting , 1977 .

[50]  David Kinderlehrer,et al.  Morphological Stability of a Particle Growing by Diffusion or Heat Flow , 1999 .

[51]  L. Segel,et al.  Mathematics Applied to Continuum Mechanics , 1977 .

[52]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[53]  Yin Jingxue,et al.  On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation , 1992 .

[54]  Evelyn Sander,et al.  Unexpectedly Linear Behavior for the Cahn-Hilliard Equation , 2000, SIAM J. Appl. Math..

[55]  Nathaniel Chafee,et al.  Asymptotic behavior for solutions of a one-dimensional parabolic equation with homogeneous Neumann boundary conditions , 1975 .

[56]  G. Sivashinsky,et al.  On cellular instability in the solidification of a dilute binary alloy , 1983 .

[57]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[58]  Lebowitz,et al.  Scaling functions, self-similarity, and the morphology of phase-separating systems. , 1991, Physical review. B, Condensed matter.

[59]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[60]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[61]  I. Holopainen Riemannian Geometry , 1927, Nature.

[62]  Amy Novick-Cohen,et al.  On Cahn-Hilliard type equations , 1990 .

[63]  Peter W. Bates,et al.  Slow motion for the Cahn-Hilliard equation in one space dimension , 1991 .

[64]  Basil Nicolaenko,et al.  Low-Dimensional Behavior of the Pattern Formation Cahn-Hilliard Equation , 1985 .

[65]  Milan Miklavčič,et al.  Stability for semilinear parabolic equations with noninvertible linear operator , 1985 .

[66]  Matthias Winter,et al.  Stationary solutions for the Cahn-Hilliard equation , 1998 .

[67]  Charles M. Elliott,et al.  Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models—III. Development of morphology , 1995 .

[68]  I. Klapper,et al.  Role of cohesion in the material description of biofilms. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Peter Palffy-Muhoray,et al.  The effects of pattern morphology on late time scaling in the Cahn-Hilliard model , 2007 .

[70]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[71]  Juncheng Wei,et al.  On the stationary Cahn-Hilliard equation bubble solutions , 1998 .

[72]  F. Otto,et al.  Upper Bounds on Coarsening Rates , 2002 .

[73]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[74]  C. Domb,et al.  The Critical Point , 1996 .

[75]  Konstantin Mischaikow,et al.  Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation , 2005 .

[76]  Charles M. Elliott,et al.  The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.

[77]  Robert L. Pego,et al.  An upper bound on the coarsening rate for mushy zones in a phase-field model , 2005 .

[78]  Felix Otto,et al.  Coarsening Rates for a Droplet Model: Rigorous Upper Bounds , 2006, SIAM J. Math. Anal..

[79]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[80]  Amy Novick-Cohen,et al.  Upper bounds for coarsening for the degenerate Cahn-Hilliard equation , 2009 .

[81]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[82]  Allan Pinkus,et al.  Fourier Series and Integral Transforms: Fourier Series , 1997 .

[83]  Roger Temam,et al.  Some Global Dynamical Properties of a Class of Pattern Formation Equations , 1989 .

[84]  James D. Murray,et al.  A generalized diffusion model for growth and dispersal in a population , 1981 .

[85]  Giambattista Giacomin,et al.  Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits , 1997, comp-gas/9705001.

[86]  Juncheng Wei,et al.  Solutions for the Cahn—Hilliard equation with many boundary spike layers , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[87]  Felix Otto,et al.  On First-order Corrections to the LSW Theory II: Finite Systems , 2005 .

[88]  Felix Otto,et al.  Coarsening Rates in Off-Critical Mixtures , 2006, SIAM J. Math. Anal..

[89]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[90]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[91]  Singiresu S. Rao,et al.  Optimization Theory and Applications , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[92]  Harald Garcke,et al.  Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix , 1997 .

[93]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[94]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[95]  J. E. Hilliard,et al.  Spinodal decomposition: A reprise , 1971 .

[96]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[97]  J. Roßmann,et al.  On the Agmon-Miranda maximum principle for solutions of strongly elliptic equations in domains of ℝn with conical points , 1992 .

[98]  Puri,et al.  Study of phase-separation dynamics by use of cell dynamical systems. II. Two-dimensional demonstrations. , 1988, Physical review. A, General physics.

[99]  Robert V. Kohn,et al.  Upper bound on the coarsening rate for an epitaxial growth model , 2003 .

[100]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[101]  Juncheng Wei,et al.  Multi-interior-spike solutions for the Cahn-Hilliard equation with arbitrarily many peaks , 2000 .

[102]  J. Keller,et al.  Fast reaction, slow diffusion, and curve shortening , 1989 .

[103]  M. Gurtin Thermomechanics of Evolving Phase Boundaries in the Plane , 1993 .

[104]  N. Alikakos,et al.  Ostwald Ripening for Dilute Systems Under Quasistationary Dynamics , 2003 .

[105]  John W. Cahn,et al.  On spinodal decomposition in cubic crystals , 1962 .

[106]  L. Peletier,et al.  Steady states of the one-dimensional Cahn–Hilliard equation , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[107]  M. Hillert,et al.  A solid-solution model for inhomogeneous systems , 1961 .

[108]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[109]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .