Multiwfn: A multifunctional wavefunction analyzer

Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density‐of‐states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built‐in graph module enables the results of wavefunction analysis to be plotted directly or exported to high‐quality graphic file. The program interface is very user‐friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open‐source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011

[1]  C David Sherrill,et al.  High accuracy ab initio studies of Li6+, Li6-, and three isomers of Li6. , 2005, The Journal of chemical physics.

[2]  S. I. Gorelsky,et al.  Mechanism of N2O reduction by the mu4-S tetranuclear CuZ cluster of nitrous oxide reductase. , 2006, Journal of the American Chemical Society.

[3]  Peng Chen,et al.  Activation of N2O reduction by the fully reduced micro4-sulfide bridged tetranuclear Cu Z cluster in nitrous oxide reductase. , 2003, Journal of the American Chemical Society.

[4]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[5]  Anik Peeters,et al.  Atomic charges from modified Voronoi polyhedra , 2001 .

[6]  S. Noorizadeh,et al.  Shannon entropy as a new measure of aromaticity, Shannon aromaticity. , 2010, Physical chemistry chemical physics : PCCP.

[7]  Per-Olov Löwdin,et al.  On the Nonorthogonality Problem , 1970 .

[8]  Peter Politzer,et al.  Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity , 1990 .

[9]  Tapas Kar,et al.  Three-center four-electron bonds and their indices , 1992 .

[10]  J. Schwartz,et al.  Organometallics , 1987, Science.

[11]  Anik Peeters,et al.  Systematic study of the parameters determining stockholder charges , 2000 .

[12]  Sason Shaik,et al.  Charge-shift bonding--a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach. , 2005, Chemistry.

[13]  Brian J. Wright,et al.  Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements , 2001 .

[14]  Robert Ponec,et al.  Investigation of Some Properties of Multicenter Bond Indices , 1997 .

[15]  Donald G. Truhlar,et al.  New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions , 1998 .

[16]  Vladimir Tsirelson,et al.  Analyzing experimental electron density with the localized-orbital locator. , 2002, Acta crystallographica. Section B, Structural science.

[17]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[18]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[19]  Charles W. Bauschlicher,et al.  The structure and stability of Bn+ clusters , 1996 .

[20]  Axel D. Becke,et al.  Chemical content of the kinetic energy density , 2000 .

[21]  Peter Politzer,et al.  Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies , 2010, Journal of molecular modeling.

[22]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[25]  Paul W Ayers,et al.  What is an atom in a molecule? , 2005, The journal of physical chemistry. A.

[26]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[27]  Peter Politzer,et al.  On the problem of defining the charge on an atom in a molecule , 1968 .

[28]  Gernot Frenking,et al.  Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals , 1995 .

[29]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[30]  Andreas Savin,et al.  Atomic Shell Structure and Electron Numbers , 1996 .

[31]  Jian-Wei Zou,et al.  Comparative insight into the halogen bonding of 4-chloropyridine and its metal [CuI, ZnII] coordinations with halide ions: A theoretical study on M–C–X⋯X′ , 2011 .

[32]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[33]  Peter Politzer,et al.  The fundamental nature and role of the electrostatic potential in atoms and molecules , 2002 .

[34]  David Esteban-Gómez,et al.  Lead(II) thiocyanate complexes with bibracchial lariat ethers: an X-ray and DFT study. , 2005, Inorganic chemistry.

[35]  Anastassia N Alexandrova,et al.  Search for the Lin(0/+1/-1) (n = 5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters. , 2005, Journal of chemical theory and computation.

[36]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[37]  Chérif F. Matta,et al.  The Quantum theory of atoms in molecules : from solid state to DNA and drug design , 2007 .

[38]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[39]  J. Murray,et al.  Statistically-based interaction indices derived from molecular surface electrostatic potentials: a general interaction properties function (GIPF) , 1994 .

[40]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[41]  Shawn T. Brown,et al.  Advances in methods and algorithms in a modern quantum chemistry program package. , 2006, Physical chemistry chemical physics : PCCP.

[42]  P Pieter Ros,et al.  Molecular Orbital Calculations on Copper Chloride Complexes , 1966 .

[43]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[44]  I. Mazin,et al.  Theory , 1934 .

[45]  Fang Wang,et al.  DFT studies on the structures and stabilities of N5+-containing salts , 2011 .

[46]  István Mayer,et al.  Charge, bond order and valence in the AB initio SCF theory , 1983 .

[47]  Nicolaas J. R. van Eikema Hommes,et al.  The Carbon−Lithium Electron Pair Bond in (CH3Li)n (n = 1, 2, 4) , 1996 .

[48]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[49]  S. Papson “Model” , 1981 .

[50]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[51]  Reinhard Nesper,et al.  A New Look at Electron Localization , 1991 .

[52]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[53]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[54]  Tapas Kar,et al.  Three-center bond index , 1990 .

[55]  Claude Lecomte,et al.  Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities , 1998 .

[56]  J. Murray,et al.  Average local ionization energy: A review , 2010, Journal of molecular modeling.

[57]  Miroslav Kohout,et al.  Electron localization function for transition-metal compounds , 2002 .

[58]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[59]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[60]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[61]  P. Politzer,et al.  An investigation of definitions of the charge on an atom in a molecule , 1968 .

[62]  Heiko Jacobsen,et al.  Localized-orbital locator (LOL) profiles of chemical bonding , 2008 .

[63]  Alexander B. Pacheco Introduction to Computational Chemistry , 2011 .

[64]  R. Constanciel,et al.  Aspects of the Localizability of Electrons in Atoms and Molecules: Loge Theory and Related Methods , 1972 .

[65]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[66]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[67]  Harold S. Johnston,et al.  Activation Energies from Bond Energies. I. Hydrogen Transfer Reactions , 1963 .

[68]  Adam I. Stash,et al.  Determination of the electron localization function from electron density , 2002 .

[69]  Peter Politzer,et al.  An overview of halogen bonding , 2007, Journal of molecular modeling.

[70]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[71]  Ian J. Bush,et al.  The GAMESS-UK electronic structure package: algorithms, developments and applications , 2005 .

[72]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[73]  Feil,et al.  Electron density study of urea using TDS-corrected X-ray diffraction data: quantitative comparison of experimental and theoretical results. , 1999, Acta crystallographica. Section B, Structural science.

[74]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[75]  Ernest R. Davidson,et al.  A test of the Hirshfeld definition of atomic charges and moments , 1992 .

[76]  R. Bader,et al.  Spatial localization of the electronic pair and number distributions in molecules , 1975 .

[77]  Friedrich Biegler-König,et al.  Update of the AIM2000‐Program for atoms in molecules , 2002, J. Comput. Chem..

[78]  Rousseau,et al.  Exploring the electronic structure of elemental lithium: from small molecules to nanoclusters, bulk metal, and surfaces , 2000, Chemistry.

[79]  L. Pacios,et al.  CheckDen, a program to compute quantum molecular properties on spatial grids. , 2009, Journal of molecular graphics & modelling.

[80]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[81]  K. Pernal,et al.  Electron localizability indicator for correlated wavefunctions. II Antiparallel-spin pairs , 2004 .

[82]  Jean-Philip Piquemal,et al.  Electron Pair Localization Function (EPLF) for Density Functional Theory and ab Initio Wave Function-Based Methods: A New Tool for Chemical Interpretation. , 2011, Journal of chemical theory and computation.

[83]  Miquel Solà,et al.  Electron localization function at the correlated level. , 2006, The Journal of chemical physics.

[84]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[85]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[86]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations , 1955 .

[87]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[88]  Miquel Solà,et al.  Electron Localization Function at the Correlated Level: A Natural Orbital Formulation. , 2010, Journal of chemical theory and computation.

[89]  R. Parr,et al.  Information theory, atoms in molecules, and molecular similarity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[90]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .