Phase diagram and dynamics of Yukawa systems

The phase diagram and dynamical properties of systems of particles interacting through a repulsive screened Coulomb (Yukawa) potential have been calculated using molecular and lattice dynamics techniques. The phase diagram contains both a melting transition and a transition from fcc to bcc crystalline phases. These phase transitions have been studied as a function of potential shape (screening length) and compared to phenomenological criteria for transition temperatures such as those of Lindemann and of Hansen and Verlet. The transition from fcc to bcc with increasing temperature is shown to result from a higher entropy in the bcc phase because of its softer shear modes. Even when the stable solid phase below the melting temperature is fcc, bcc‐like local order is found in the liquid phase. This may substantially slow crystallization. The calculated phase diagram and shear modulus are in good agreement with experiments on colloidal suspensions of polystyrene spheres. The single particle dynamics of Yukawa...

[1]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[2]  Hansen,et al.  Soft-sphere model for the glass transition in binary alloys: Pair structure and self-diffusion. , 1987, Physical review. A, General physics.

[3]  N. Ise,et al.  Two‐dimensional Fourier analysis of colloid crystals in dilute suspensions. I , 1987 .

[4]  R. Kikuchi,et al.  Phase diagrams of charged colloidal particles , 1987 .

[5]  Murray,et al.  Experimental observation of two-stage melting in a classical two-dimensional screened Coulomb system. , 1987, Physical review letters.

[6]  Rosenberg Infrared radiative corrections: Extended treatment applicable to resonant scattering. , 1987, Physical review. A, General physics.

[7]  G. Grest,et al.  Dynamics of supercooled liquids interacting with a repulsive Yukawa potential , 1987 .

[8]  B. U. Felderhof,et al.  Dynamics of colloidal crystals , 1986 .

[9]  Robbins,et al.  Phase diagram of Yukawa systems: Model for charge-stabilized colloids. , 1986, Physical review letters.

[10]  M. Lozada-Cassou,et al.  The force between two planar electrical double layers. Some numerical results , 1986 .

[11]  Rosenberg,et al.  Structure and dynamics of screened-Coulomb colloidal liquids. , 1986, Physical review. A, General physics.

[12]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[13]  T. R. Middya,et al.  Self‐consistent T‐matrix solution for the effective elastic properties of noncubic polycrystals , 1986 .

[14]  I. Snook,et al.  A simple model for the interpretation of static structure factors of ion-exchanged latex suspensions , 1984 .

[15]  G. Jacucci,et al.  Relative stability of f.c.c. and b.c.c. structures for model systems at high temperatures , 1984 .

[16]  I. Shook,et al.  Equilibrium properties of suspensions , 1984 .

[17]  P. Chaikin,et al.  Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory , 1984 .

[18]  H. Wennerström,et al.  Electrical double layer forces: a Monte Carlo study , 1984 .

[19]  D. Stroud,et al.  Theoretical study of the freezing of polystyrene sphere suspensions , 1983 .

[20]  P. Chaikin,et al.  The phase diagram of charged colloidal suspensions , 1983 .

[21]  S. Nosé,et al.  A study of solid and liquid carbon tetrafluoride using the constant pressure molecular dynamics technique , 1983 .

[22]  N. Clark,et al.  Lattice dynamics of colloidal crystals , 1982 .

[23]  Farid F. Abraham,et al.  Computer-Simulation Dynamics of an Unstable Two-Dimensional Fluid: Time-Dependent Morphology and Scaling , 1982 .

[24]  P. Chaikin,et al.  Elastic properties of colloidal crystals and glasses , 1982 .

[25]  J. Weeks Volume change on melting for systems with inverse-power-law interactions , 1981 .

[26]  M. Wadati,et al.  Theory of Structure Transition of Colloid , 1981 .

[27]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[28]  P. Pieranski,et al.  Two-Dimensional Interfacial Colloidal Crystals , 1980 .

[29]  G. H. Keech,et al.  Dynamics of the crystallized one-component plasma , 1980 .

[30]  P. Pieranski,et al.  Shear waves in colloidal crystals : I. Determination of the elastic modulus , 1980 .

[31]  J. Joanny Acoustic shear waves in colloidal crystals , 1979 .

[32]  Alan J. Hurd,et al.  Single colloidal crystals , 1979, Nature.

[33]  J. McTague,et al.  Should All Crystals Be bcc? Landau Theory of Solidification and Crystal Nucleation , 1978 .

[34]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .

[35]  R. Crandall,et al.  Gravitational Compression of Crystallized Suspensions of Polystyrene Spheres , 1977, Science.

[36]  Aneesur Rahman,et al.  Crystal nucleation in a three‐dimensional Lennard‐Jones system. II. Nucleation kinetics for 256 and 500 particles , 1977 .

[37]  I. Snook,et al.  Structure and ordering in dilute dispersions of spherical particles , 1977 .

[38]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[39]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[40]  I. R. Mcdonald,et al.  Statistical mechanics of dense ionized matter. III. Dynamical properties of the classical one-component plasma , 1975 .

[41]  R. Crandall,et al.  The structure of crystallized suspensions of polystyrene spheres , 1974 .

[42]  J. Friedel On the stability of the body centred cubic phase in metals at high temperatures , 1974 .

[43]  R. Hoffman Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests , 1974 .

[44]  J. Hansen Statistical Mechanics of Dense Ionized Matter. I. Equilibrium Properties of the Classical One-Component Plasma , 1973 .

[45]  William G. Hoover,et al.  Statistical Mechanics of Phase Diagrams. I. Inverse Power Potentials and the Close‐Packed to Body‐Centered Cubic Transition , 1972 .

[46]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[47]  L. V. Woodcock Isothermal molecular dynamics calculations for liquid salts , 1971 .

[48]  Jean-Pierre Hansen,et al.  Phase Transitions of the Lennard-Jones System , 1969 .

[49]  W. G. Hoover,et al.  Use of Computer Experiments to Locate the Melting Transition and Calculate the Entropy in the Solid Phase , 1967 .

[50]  R. Meister,et al.  Variational Method of Determining Effective Moduli of Polycrystals with Tetragonal Symmetry , 1966 .

[51]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[52]  R. Hultgren,et al.  Selected Values of Thermodynamic Properties of Metals and Alloys , 1963 .

[53]  A. Weissberger Physical methods of organic chemistry , 1950 .

[54]  C. Zener Contributions to the Theory of Beta-Phase Alloys , 1947 .

[55]  R. Pynn,et al.  Time-dependent effects in disordered materials , 1988 .

[56]  N. Clark,et al.  Physics of complex and supermolecular fluids , 1987 .

[57]  J. Hayter,et al.  An analytic structure factor for macroion solutions , 1981 .

[58]  S. Yoshimura,et al.  Optical demonstration of crystalline superstructures in binary mixtures of latex globules , 1980, Nature.

[59]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[60]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[61]  J. A. V. BUTLER,et al.  Theory of the Stability of Lyophobic Colloids , 1948, Nature.

[62]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .