Syntactic and Semantic Structure for Opinion Expression Detection

We demonstrate that relational features derived from dependency-syntactic and semantic role structures are useful for the task of detecting opinionated expressions in natural-language text, significantly improving over conventional models based on sequence labeling with local features. These features allow us to model the way opinionated expressions interact in a sentence over arbitrary distances. While the relational features make the prediction task more computationally expensive, we show that it can be tackled effectively by using a reranker. We evaluate a number of machine learning approaches for the reranker, and the best model results in a 10-point absolute improvement in soft recall on the MPQA corpus, while decreasing precision only slightly.

[1]  Alessandro Moschitti,et al.  Re-Ranking Models Based-on Small Training Data for Spoken Language Understanding , 2009, EMNLP.

[2]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[3]  Erik F. Tjong Kim Sang,et al.  Representing Text Chunks , 1999, EACL.

[4]  Xuanjing Huang,et al.  Phrase Dependency Parsing for Opinion Mining , 2009, EMNLP.

[5]  Roberto Basili,et al.  Complex Linguistic Features for Text Classification: A Comprehensive Study , 2004, ECIR.

[6]  Janyce Wiebe,et al.  Computing Attitude and Affect in Text: Theory and Applications , 2005, The Information Retrieval Series.

[7]  Lise Getoor,et al.  Supervised and Unsupervised Methods in Employing Discourse Relations for Improving Opinion Polarity Classification , 2009, EMNLP.

[8]  Richard Johansson,et al.  Dependency-based Syntactic–Semantic Analysis with PropBank and NomBank , 2008, CoNLL.

[9]  Yuji Matsumoto,et al.  Extracting Aspect-Evaluation and Aspect-Of Relations in Opinion Mining , 2007, EMNLP.

[10]  Daniel Gildea,et al.  The Proposition Bank: An Annotated Corpus of Semantic Roles , 2005, CL.

[11]  Claire Cardie,et al.  Joint Extraction of Entities and Relations for Opinion Recognition , 2006, EMNLP.

[12]  Hong Yu,et al.  Extracting Opinion Propositions and Opinion Holders using Syntactic and Lexical Cues , 2006, Computing Attitude and Affect in Text.

[13]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[14]  Roberto Basili,et al.  Effective use of WordNet Semantics via Kernel-Based Learning , 2005, CoNLL.

[15]  Alessandro Moschitti,et al.  Convolution Kernels on Constituent, Dependency and Sequential Structures for Relation Extraction , 2009, EMNLP.

[16]  Claire Cardie,et al.  Identifying Expressions of Opinion in Context , 2007, IJCAI.

[17]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[18]  W. Bruce Croft,et al.  Logical and typological arguments for Radical Construction Grammar , 2005 .

[19]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[20]  Stephan Bloehdorn,et al.  Structure and semantics for expressive text kernels , 2007, CIKM '07.

[21]  Gunnar Eriksson,et al.  Between Bags and Trees - Constructional Patterns in Text Used for Attitude Identification , 2010, ECIR.

[22]  Stephan Bloehdorn,et al.  Semantic Kernels for Text Classification Based on Topological Measures of Feature Similarity , 2006, Sixth International Conference on Data Mining (ICDM'06).

[23]  Aravind K. Joshi,et al.  An SVM-based voting algorithm with application to parse reranking , 2003, CoNLL.

[24]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[25]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[26]  Alessandro Moschitti,et al.  Making Tree Kernels Practical for Natural Language Learning , 2006, EACL.

[27]  Igor Mel’čuk,et al.  Dependency Syntax: Theory and Practice , 1987 .

[28]  Knowledge Discovering using FrameNet, VerbNet and PropBank , 2004 .

[29]  Swapna Somasundaran,et al.  Finding the Sources and Targets of Subjective Expressions , 2008, LREC.

[30]  Janyce Wiebe,et al.  Development and Use of a Gold-Standard Data Set for Subjectivity Classifications , 1999, ACL.

[31]  Claire Cardie,et al.  Annotating Expressions of Opinions and Emotions in Language , 2005, Lang. Resour. Evaluation.

[32]  Alessandro Moschitti,et al.  Kernel methods, syntax and semantics for relational text categorization , 2008, CIKM '08.

[33]  Jun Suzuki,et al.  Hierarchical Directed Acyclic Graph Kernel: Methods for Structured Natural Language Data , 2003, ACL.

[34]  Michael Collins,et al.  New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron , 2002, ACL.

[35]  Dietrich Klakow,et al.  Convolution Kernels for Opinion Holder Extraction , 2010, NAACL.

[36]  Hong Yu,et al.  Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences , 2003, EMNLP.

[37]  Stephan Bloehdorn,et al.  Combined Syntactic and Semantic Kernels for Text Classification , 2007, ECIR.

[38]  Liang Huang,et al.  Forest Reranking: Discriminative Parsing with Non-Local Features , 2008, ACL.

[39]  Ralph Grishman,et al.  The NomBank Project: An Interim Report , 2004, FCP@NAACL-HLT.

[40]  Carolyn Penstein Rosé,et al.  Generalizing Dependency Features for Opinion Mining , 2009, ACL.

[41]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..

[42]  Roberto Basili,et al.  A Semantic Kernel to Classify Texts with Very Few Training Examples , 2006, Informatica.

[43]  Richard Johansson,et al.  The Effect of Syntactic Representation on Semantic Role Labeling , 2008, COLING.

[44]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[45]  Eduard Hovy,et al.  Extracting Opinions, Opinion Holders, and Topics Expressed in Online News Media Text , 2006 .

[46]  Yoav Freund,et al.  Large Margin Classification Using the Perceptron Algorithm , 1998, COLT' 98.

[47]  Alessandro Moschitti,et al.  Semantic Role Labeling via FrameNet, VerbNet and PropBank , 2006, ACL.

[48]  Jian Su,et al.  Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel , 2006, NAACL.

[49]  Mirjam Fried,et al.  Construction grammars : cognitive grounding and theoretical extensions , 2005 .