Efficient Fluid-Structure Interaction Simulation of Viscoplastic and Fracturing Thin-Shells Subjected to Underwater Shock Loading

The fluid-structure interaction simulation of shock-loaded thin-walled structures requires numerical methods that can cope with large deformations as well as local topology changes. We present a robust level-set-based approach that integrates a Lagrangian thin-shell finite element solver with fracture and fragmentation capabilities into an Eulerian Cartesian fluid solver with embedded boundary and mesh adaptation capability. As main computational applications, we consider the plastic deformation and rupture of thin plates subjected to explosion and pistoninduced pressure waves in water.

[1]  Ralf Deiterding,et al.  An Adaptive Cartesian Detonation Solver for Fluid-Structure Interaction Simulation on Distributed Memory Computers , 2006 .

[2]  Rainald Löhner,et al.  Fluid-Structure Interaction Simulations Using Parallel Computers , 2002, VECPAR.

[3]  S. F. Davis Simplified second-order Godunov-type methods , 1988 .

[4]  Jiaquan Gao,et al.  How to prevent pressure oscillations in multicomponent flow calculations , 2000, Proceedings Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region.

[5]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[6]  Vikram Deshpande,et al.  Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading , 2004, Journal of Applied Mechanics.

[7]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[8]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[9]  M. Arienti,et al.  A level set approach to Eulerian-Lagrangian coupling , 2003 .

[10]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[11]  D. Meiron,et al.  Efficient algorithms for solving static hamilton-jacobi equations , 2003 .

[12]  A. Weinberg,et al.  Oak Ridge National Laboratory. , 1949, Science.

[13]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[14]  M. Ortiz,et al.  A material‐independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics , 1992 .

[15]  Ralf Deiterding,et al.  A virtual test facility for simulating detonation-induced deformation and fracture of thin flexible shells , 2006 .

[16]  Keh-Ming Shyue,et al.  An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems , 1998 .

[17]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[18]  A. K. Ghamsari,et al.  Theoretical and experimental analysis of plastic response of isotropic circular plates subjected to underwater explosion loading , 2008 .

[19]  Michael Ortiz,et al.  A cohesive approach to thin-shell fracture and fragmentation , 2005 .

[20]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[21]  Ralf Deiterding,et al.  A Virtual Test Facility for Simulating Detonation-Induced Fracture of Thin Flexible Shells , 2006, International Conference on Computational Science.

[22]  Ravi Samtaney,et al.  Coupled Eulerian-Lagrangian simulations using a level set method , 2003 .

[23]  Singapore-MIT Alliance,et al.  Application of a one-fluid model for large scale homogeneous unsteady cavitation: The modified Schmidt model , 2006 .

[24]  Fehmi Cirak,et al.  A Lagrangian-Eulerian shell-fluid coupling algorithm based on level sets , 2003 .

[25]  Y. Burtschell,et al.  Shock wave impacts on deforming panel, an application of fluid-structure interaction , 2005 .

[26]  N. Fleck,et al.  An underwater shock simulator , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  R. Borst The zero-normal-stress condition in plane-stress and shell elastoplasticity , 1991 .

[28]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[29]  Michael Aivazis,et al.  A virtual test facility for simulating the dynamic response of materials , 2000, Comput. Sci. Eng..

[30]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[31]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[32]  K. Shyue A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems , 2006 .

[33]  R. Fedkiw,et al.  Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .