Micro-hydration of the MgNO3+ cation in the gas phase.

Coordination complexes of the magnesium nitrate cation with water [MgNO(3)(H(2)O)(n)](+) up to n=7 are investigated by experiment and theory. The fragmentation patterns of [MgNO(3)(H(2)O)(n)](+) clusters generated via electrospray ionization indicate a considerable change in stability between n=3 and 4. Further, ion-molecule reactions of mass-selected [MgNO(3)(H(2)O)(n)](+) cations with D(2)O reveal the occurrence of consecutive replacement of water ligands by heavy water, and in this respect the complexes with n=4 and 5 are somewhat more reactive than their smaller homologs with n=1-3 as well as the larger clusters with n=6 and 7. For the latter two ions, the theory suggests the existence of isomers, such as complexes with monodentate nitrato ligands as well as solvent-separated ion pairs with a common solvation shell. The reactions observed and the ion thermochemistry are discussed in the context of ab initio calculations, which also reveal the structures of the various hydrated cation complexes.

[1]  M. Beyer Hydrated metal ions in the gas phase. , 2007, Mass spectrometry reviews.

[2]  M. Crestoni,et al.  Meisenheimer complexes positively characterized as stable intermediates in the gas phase. , 2007, Angewandte Chemie.

[3]  A. Simon,et al.  Fingerprint vibrational spectra of protonated methyl esters of amino acids in the gas phase. , 2007, Journal of the American Chemical Society.

[4]  M. F. Bush,et al.  Evidence for water rings in the hexahydrated sulfate dianion from IR spectroscopy. , 2007, Journal of the American Chemical Society.

[5]  H. Schwarz,et al.  C–H Bond Activation ofMethane with Gaseous [(CH3)Pt(L)]+ Complexes (L = Pyridine, Bipyridine, and Phenanthroline) , 2007 .

[6]  D. Neumark,et al.  Infrared spectroscopy of hydrated sulfate dianions. , 2006, The Journal of chemical physics.

[7]  Lai‐Sheng Wang,et al.  First steps towards dissolution of NaSO4- by water. , 2006, Physical chemistry chemical physics : PCCP.

[8]  Francois Glotin,et al.  Extension in far-infrared of the CLIO free-electron laser , 2006 .

[9]  Goryunov As H/D isotope effects on protein hydration and interaction in solution. , 2006 .

[10]  D. Schröder,et al.  Thermische Aktivierung von Methan: Es geht auch ohne Übergangsmetalle† , 2006 .

[11]  D. Schröder,et al.  Low-temperature activation of methane: it also works without a transition metal. , 2006, Angewandte Chemie.

[12]  J. Sauer,et al.  Degradation of ionized OV(OCH3)3 in the gas phase. From the neutral compound all the way down to the quasi-terminal fragments VO+ and VOH+. , 2006, Inorganic chemistry.

[13]  H. Schwarz,et al.  Electrospray ionization as a convenient new method for the generation of catalytically active iron-oxide ions in the gas phase , 2006 .

[14]  B. Minofar,et al.  Propensity for the air/water interface and ion pairing in magnesium acetate vs magnesium nitrate solutions: molecular dynamics simulations and surface tension measurements. , 2006, The journal of physical chemistry. B.

[15]  M. Gruber,et al.  Protonentransfer in ionischen Wasserclustern , 2006 .

[16]  M. Beyer,et al.  Proton transfer in ionic water clusters. , 2006, Angewandte Chemie.

[17]  H. Schwarz,et al.  Dissociation routes of protonated toluene probed by infrared spectroscopy in the gas phase. , 2006, The journal of physical chemistry. A.

[18]  Andrew S Greene,et al.  BN phenome: detailed characterization of the cardiovascular, renal, and pulmonary systems of the sequenced rat. , 2006, Physiological genomics.

[19]  A. Simon,et al.  Mid-IR spectroscopy of protonated leucine methyl ester performed with an FTICR or a Paul type ion-trap , 2006 .

[20]  P. Armentrout,et al.  Guided-ion beam and theoretical study of the potential energy surface for activation of methane by W+. , 2006, The journal of physical chemistry. A.

[21]  K. D. Collins Ion hydration: Implications for cellular function, polyelectrolytes, and protein crystallization. , 2006, Biophysical chemistry.

[22]  B. Minofar,et al.  Ultrasonic velocities, densities, viscosities, electrical conductivities, Raman spectra, and molecular dynamics simulations of aqueous solutions of Mg(OAc)2 and Mg(NO3)2: Hofmeister effects and ion pair formation. , 2005, The journal of physical chemistry. B.

[23]  H. Schwarz,et al.  A gas-phase study of the gold-catalyzed coupling of alkynes and alcohols , 2005 .

[24]  G. Jancsó,et al.  Effect of D and 18O isotope substitution on the absorption spectra of aqueous copper sulfate solutions , 2005 .

[25]  M. Adrian-Scotto,et al.  Hydration of Mg++ : a quantum DFT and ab initio HF study , 2005 .

[26]  H. Schwarz,et al.  Coordination of iron(III) cations to beta-keto esters as studied by electrospray mass spectrometry: implications for iron-catalyzed Michael addition reactions. , 2005, Chemistry.

[27]  J. Oomens,et al.  Free electron laser-Fourier transform ion cyclotron resonance mass spectrometry facility for obtaining infrared multiphoton dissociation spectra of gaseous ions , 2005 .

[28]  B. Reinhard,et al.  Ab initio study of [Mg,nH2O]− reactive decay products: structure and stability of magnesium oxide and magnesium hydroxide water cluster anions [MgO,(n− 1)H2O]−, [HMgOH,(n− 1)H2O]− and [Mg(OH)2,(n− 2)H2O]− , 2004 .

[29]  H. Schwarz,et al.  Secondary kinetic isotope effects in cation-bound dimers of acetone (C3H6O)M(C3D6O)+ with M = H, Li, Na, K, Rb, Ag, and Cs , 2004 .

[30]  C. Chan,et al.  Relating Hygroscopic Properties of Magnesium Nitrate to the Formation of Contact Ion Pairs , 2004 .

[31]  H. Schwarz,et al.  Eine Gasphasenreaktion als funktionales Modell der Aktivierung von Kohlendioxid durch die Carboanhydrase , 2003 .

[32]  E. Anders,et al.  A gas-phase reaction as a functional model for the activation of carbon dioxide by carbonic anhydrase. , 2003, Angewandte Chemie.

[33]  H. Schwarz,et al.  Gas-phase solvation behavior of Ni(II) in water/N, N-dimethylformamide mixtures , 2003 .

[34]  M. Duncan,et al.  Generation of "unstable" doubly charged metal ion complexes in a laser vaporization cluster source , 2003 .

[35]  Johann Spandl,et al.  Ion chemistry of the hexanuclear methoxo-oxovanadium cluster V6O7(OCH3)12 , 2003 .

[36]  S. Schlemmer,et al.  Investigations of Protonated and Deprotonated Water Clusters Using a Low-Temperature 22-Pole Ion Trap , 2003 .

[37]  H. Schwarz,et al.  Fe+-Mediated Interconversion of n- and i-C3H7OH Preceding Their Gas-Phase Dehydrations: Experimental and Computational Evidence for Memory Effects and Inherent Asymmetry of Constitutionally Equivalent Methyl Groups†,‡ , 2003 .

[38]  H. Schwarz,et al.  Dissociation behavior of Cu(urea)+ complexes generated by electrospray ionization , 2002 .

[39]  S. Petrie Model chemistry methods for molecular dications: The magnesium dication affinity scale , 2002 .

[40]  Charles W. Bock,et al.  The Arrangement of First- and Second-Sphere Water Molecules in Divalent Magnesium Complexes: Results from Molecular Orbital and Density Functional Theory and from Structural Crystallography , 2002 .

[41]  B. Reinhard,et al.  Co-existence of hydrated electron and metal di-cation in [Mg(H2O)n]+ , 2002 .

[42]  H. Schwarz,et al.  Dissociation behavior of ionized valeramide: Part I. Experimental studies , 2002 .

[43]  I. Kretzschmar,et al.  Gas-Phase Chemistry of Bare V+ Cation with Oxygen and Water at Room Temperature: Formation and Hydration of Vanadium Oxide Cations , 2001 .

[44]  I. Kretzschmar,et al.  Platinum dioxide cation: easy to generate experimentally but difficult to describe theoretically. , 2001, Journal of the American Chemical Society.

[45]  P. Schwerdtfeger,et al.  Kinetics of radiative/termolecular associations in the low pressure regime: reactions of bare au+ with benzene , 2000 .

[46]  P. Barran,et al.  A Gas-Phase Study of the Coordination of Mg2+ with Oxygen- and Nitrogen-Containing Ligands , 2000 .

[47]  Peter Chen,et al.  Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene Complexes Using Electrospray Ionization Tandem Mass Spectrometry , 2000 .

[48]  Roland H. Hertwig,et al.  Equilibrium Isotope Effects in Cationic Transition-Metal(I) Ethene Complexes M(C2X4)+ with M = Cu, Ag, Au and X = H, D , 2000 .

[49]  H. Schwarz,et al.  A density-functional theory based study on the 16O/18O-exchange reactions of the prototype iron-oxygen compounds FeO+ and FeOH+ with H2(18)O in the gas phase , 2000, Chemistry.

[50]  P. Barran,et al.  Competitive charge transfer reactions in small [Mg(H2O)N]2+ clusters , 2000 .

[51]  Vachet,et al.  Quadrupole ion trap studies of the structure and reactivity of transition metal ion pair complexes , 2000, Journal of mass spectrometry : JMS.

[52]  A. Andersen,et al.  Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6 , 2000 .

[53]  P. Jungwirth How Many Waters Are Necessary To Dissolve a Rock Salt Molecule , 2000 .

[54]  R. A. Jockusch,et al.  Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5-7, M = Mg, Ca, Sr, and Ba. , 1999, Journal of the American Chemical Society.

[55]  M. Alcamí,et al.  Performance of density functional theory methods for the treatment of metal-ligand dications , 1999 .

[56]  P. Kebarle,et al.  FORMATION, ACIDITY AND CHARGE REDUCTION OF THE HYDRATES OF DOUBLY CHARGED IONS M2+ (BE2+, MG2+, CA2+, ZN2+) , 1999 .

[57]  D. Bohme,et al.  Magnesium chemistry in the gas phase: calculated thermodynamic properties and experimental ion chemistry in H2–O2–N2 flames , 1999 .

[58]  H. Schwarz,et al.  Reactions of Bare FeO+ with Element Hydrides EHn (E=C, N, O, F, Si, P, S, Cl) , 1999 .

[59]  R. A. Jockusch,et al.  Binding energies of hexahydrated alkaline earth metal ions, M2+(H2O)6, M = Mg, Ca, Sr, Ba: evidence of isomeric structures for magnesium. , 1999, Journal of the American Chemical Society.

[60]  M. Beyer,et al.  Unimolecular reactions of dihydrated alkaline earth metal dications M2+(H2O)2, M = Be, Mg, Ca, Sr, and Ba: salt-bridge mechanism in the proton-transfer reaction M2+(H2O)2 --> MOH+ + H3O. , 1999, Journal of the American Chemical Society.

[61]  P. Kebarle,et al.  Hydration Energies and Entropies for Mg2+, Ca2+, Sr2+, and Ba2+ from Gas-Phase Ion−Water Molecule Equilibria Determinations , 1998 .

[62]  Per E. M. Siegbahn,et al.  Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory , 1998 .

[63]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[64]  J. Salpin,et al.  A relationship between the kinetics and thermochemistry of proton transfer reactions in the gas phase , 1996 .

[65]  V. Bondybey,et al.  Protonated water clusters and their black body radiation induced fragmentation , 1996 .

[66]  R. Caminiti,et al.  Ab initio HF-SCF studies of the equilibrium structures and vibrational spectra of the Be(NO3)2, Mg(NO3)2 and Ca(NO3)2 molecules , 1994 .

[67]  H. Schwarz,et al.  Catalytic Pt+-Mediated Oxidation of Methane by Molecular Oxygen in the Gas Phase†‡ , 1994 .

[68]  H. Schwarz,et al.  Katalytische, PtI‐vermittelte Oxidation von Methan mit molekularem Sauerstoff in der Gasphase , 1994 .

[69]  J. V. Ford,et al.  Water clusters: Contributions of binding energy and entropy to stability , 1993 .

[70]  H. Schwarz,et al.  Fe⊕‐Catalyzed Gas‐Phase Oxidation of Ethane by N2O , 1990 .

[71]  H. Schwarz,et al.  Fe⊕-katalysierte Gasphasenoxidation von Ethan durch N2O†‡ , 1990 .

[72]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[73]  G. Herzberg Infrared and raman spectra , 1964 .