Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin

In this paper we obtain asymptotic estimates of Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin. In addition, estimates of Kolmogorov and linear widths of finite-dimensional balls in a mixed norm are obtained.

[1]  Stefan Heinrich On the relation between linear n -widths and approximation numbers , 1989 .

[2]  H. Triebel,et al.  Entropy Numbers in Weighted Function Spaces and Eigenvalue Distributions of Some Degenerate Pseudodifferential Operators II , 1994 .

[3]  Annie A. M. Cuyt,et al.  Approximation Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[4]  A. Gąsiorowska Gelfand and Kolmogorov numbers of embedding of radial Besov and Sobolev spaces , 2011 .

[5]  Dorothee D. Haroske,et al.  Envelopes and Sharp Embeddings of Function Spaces , 2006 .

[6]  Shun Zhang,et al.  Some s-numbers of embeddings in function spaces with polynomial weights , 2014, J. Complex..

[7]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[8]  A. Vasil'eva Kolmogorov widths and approximation numbers of Sobolev classes with singular weights , 2012 .

[9]  Thomas Kühn,et al.  Entropy numbers in sequence spaces with an application to weighted function spaces , 2008, J. Approx. Theory.

[10]  B. S. Kašin,et al.  DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS , 1977 .

[11]  A. Pietsch,et al.  s-Numbers of operators in Banach spaces , 1974 .

[12]  M. Fowler,et al.  Function Spaces , 2022 .

[13]  Jan Vybíral,et al.  Widths of embeddings in function spaces , 2008, J. Complex..

[14]  ON A METHOD FOR ESTIMATION FROM BELOW OF DIAMETERS OF SETS IN BANACH SPACES , 1972 .

[15]  D. Haroske,et al.  Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis , 2008 .

[16]  Marcin Bownik Atomic and molecular decompositions of anisotropic Besov spaces , 2005 .

[17]  D. Haroske,et al.  Atomic decompositions of function spaces with Muckenhoupt weights ; an example from fractal geometry , 2005 .

[18]  L. Skrzypczak,et al.  Some s‐numbers of embeddings of function spaces with weights of logarithmic type , 2013 .

[19]  V. Tikhomirov,et al.  SPECTRA OF NONLINEAR DIFFERENTIAL EQUATIONS AND WIDTHS OF SOBOLEV CLASSES , 1992 .

[20]  W. Sickel,et al.  Entropy Numbers of Embeddings of Weighted Besov Spaces , 2005 .

[21]  É. M. Galeev,et al.  KOLMOGOROV WIDTHS OF CLASSES OF PERIODIC FUNCTIONS OF ONE AND SEVERAL VARIABLES , 1991 .

[22]  H. Triebel Fractals and spectra , 1997 .

[23]  H. Triebel Theory Of Function Spaces , 1983 .

[24]  D. Haroske,et al.  Entropy and Approximation Numbers of Embeddings of Function Spaces with Muckenhoupt Weights, I , 2008 .

[25]  A. D. Izaak Kolmogorov widths in finite-dimensional spaces with mixed norms , 1994 .

[26]  António M. Caetano,et al.  About Approximation Numbers in Function Spaces , 1998 .

[27]  D. Haroske,et al.  ENTROPY AND APPROXIMATION NUMBERS OF EMBEDDINGS OF FUNCTION SPACES WITH MUCKENHOUPT WEIGHTS, II. GENERAL WEIGHTS , 2011 .

[28]  H. Triebel Theory of Function Spaces III , 2008 .

[29]  D. Haroske,et al.  Entropy numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases , 2011 .

[30]  R. S. Ismagilov,et al.  DIAMETERS OF SETS IN NORMED LINEAR SPACES AND THE APPROXIMATION OF FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS , 1974 .

[31]  Shun Zhang,et al.  Gelfand and Kolmogorov numbers of Sobolev embeddings of weighted function spaces , 2011, J. Complex..

[32]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[33]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[34]  Leszek Skrzypczak On approximation numbers of Sobolev embeddings of weighted function spaces , 2005, J. Approx. Theory.

[35]  Bui Huy Qui Weighted Besov and Triebel spaces: interpolation by the real method , 1982 .

[36]  V. Tikhomirov,et al.  DIAMETERS OF SETS IN FUNCTION SPACES AND THE THEORY OF BEST APPROXIMATIONS , 1960 .

[37]  Cornelia Schneider,et al.  Besov spaces with positive smoothness on Rn, embeddings and growth envelopes , 2009, J. Approx. Theory.

[38]  G. Fang,et al.  Gelfand and Kolmogorov numbers of embeddings in weighted function spaces , 2011 .

[39]  Winfried Sickel,et al.  Entropy numbers of Sobolev embeddings of radial Besov spaces , 2003, J. Approx. Theory.

[40]  V N Temlyakov APPROXIMATION OF FUNCTIONS WITH A BOUNDED MIXED DIFFERENCE BY TRIGONOMETRIC POLYNOMIALS, AND THE WIDTHS OF SOME CLASSES OF FUNCTIONS , 1983 .

[41]  E. Gluskin NORMS OF RANDOM MATRICES AND WIDTHS OF FINITE-DIMENSIONAL SETS , 1984 .

[42]  É. M. Galeev Approximation by Fourier sums of classes of functions with several bounded derivatives , 1978 .

[43]  G. Alexits Approximation theory , 1983 .

[44]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[45]  H. Triebel,et al.  Wavelet bases and entropy numbers in weighted function spaces , 2005 .

[46]  W. Sickel,et al.  Entropy numbers of embeddings of weighted Besov spaces III. Weights of logarithmic type , 2006 .

[47]  Andrej Yu. Garnaev,et al.  On widths of the Euclidean Ball , 1984 .

[48]  T. Kühn Entropy Numbers of General Diagonal Operators , 2005 .