Third law of thermodynamics as a key test of generalized entropies.
暂无分享,去创建一个
G M Viswanathan | M G E da Luz | G. Viswanathan | M. D. Luz | E. P. Bento | E P Bento | R Silva | R. Silva | M. G. D. da Luz | Rafaela Carvalho Silva
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] P. W. Bridgman. The Thermodynamics of Plastic Deformation and Generalized Entropy , 1950 .
[3] E. Ising. Beitrag zur Theorie des Ferromagnetismus , 1925 .
[5] Tam'as S. Bir'o,et al. A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy , 2013, 1309.4261.
[6] Stefan Thurner,et al. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems , 2014, Proceedings of the National Academy of Sciences.
[7] H. Callen. Thermodynamics and an Introduction to Thermostatistics , 1988 .
[8] A. Plastino,et al. Nonextensive thermostatistics and the H theorem. , 2001, Physical review letters.
[9] G. Kaniadakis,et al. Non-linear kinetics underlying generalized statistics , 2001 .
[10] G. Kaniadakis,et al. Statistical mechanics in the context of special relativity. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Andrea Benaglia,et al. Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .
[12] Michael Nauenberg. Critique of q-entropy for thermal statistics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] Temperature of nonextensive systems: Tsallis entropy as Clausius entropy , 2005, cond-mat/0504036.
[14] Constantino Tsallis,et al. Black hole thermodynamical entropy , 2012, 1202.2154.
[15] T S Biró,et al. Zeroth law compatibility of nonadditive thermodynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Kingshuk Ghosh,et al. Nonadditive entropies yield probability distributions with biases not warranted by the data. , 2013, Physical review letters.
[18] R. Toral,et al. Reply to the Comment on``Scaling Laws for a System with Long--Range Interactions within Tsallis Statistics'' , 1999, cond-mat/0005467.
[19] P. Douglas,et al. Tunable Tsallis distributions in dissipative optical lattices. , 2006, Physical review letters.
[20] R. Cywinski,et al. Generalized spin-glass relaxation. , 2009, Physical review letters.
[21] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[22] K. Dill,et al. A maximum entropy framework for nonexponential distributions , 2013, Proceedings of the National Academy of Sciences.
[23] Christian Beck,et al. Generalised information and entropy measures in physics , 2009, 0902.1235.
[24] Nonextensive quantum H-theorem , 2009, 0908.0965.
[25] Y. Levin,et al. Nonequilibrium statistical mechanics of systems with long-range interactions , 2013, 1310.1078.
[26] J. C. Carvalho,et al. NON-GAUSSIAN STATISTICS AND STELLAR ROTATIONAL VELOCITIES OF MAIN-SEQUENCE FIELD STARS , 2009, 0903.0868.
[27] Bin Liu,et al. Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. , 2008, Physical review letters.
[28] W. Nernst. Ueber die Berechnung chemischer Gleichgewichte aus thermischen Messungen , 1906 .
[29] G. Kaniadakis,et al. Statistical mechanics in the context of special relativity. II. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[30] Stefan Thurner,et al. When do generalized entropies apply? How phase space volume determines entropy , 2011, 1104.2064.
[31] Relativistic nonextensive thermodynamics , 2002, cond-mat/0207353.
[32] Alexander N. Gorban,et al. General H-theorem and Entropies that Violate the Second Law , 2012, Entropy.
[33] C. Tsallis,et al. Nonextensive Entropy: Interdisciplinary Applications , 2004 .
[34] Giorgio Kaniadakis,et al. Relaxation of Relativistic Plasmas Under the Effect of Wave-Particle Interactions , 2007 .
[35] François Chapeau-Blondeau,et al. Tsallis entropy measure of noise-aided information transmission in a binary channel , 2011 .