Normative Framework for Deriving Neural Networks with Multicompartmental Neurons and Non-Hebbian Plasticity

An established normative approach for understanding the algorithmic basis of neural computation is to derive online algorithms from principled computational objectives and evaluate their compatibility with anatomical and physiological observations. Similarity matching objectives have served as successful starting points for deriving online algorithms that map onto neural networks (NNs) with point neurons and Hebbian/anti-Hebbian plasticity. These NN models account for many anatomical and physiological observations; however, the objectives have limited computational power and the derived NNs do not explain multi-compartmental neuronal structures and non-Hebbian forms of plasticity that are prevalent throughout the brain. In this article, we unify and generalize recent extensions of the similarity matching approach to address more complex objectives, including a large class of unsupervised and self-supervised learning tasks that can be formulated as symmetric generalized eigenvalue problems or nonnegative matrix factorization problems. Interestingly, the online algorithms derived from these objectives naturally map onto NNs with multi-compartmental neurons and local, non-Hebbian learning rules. Therefore, this unified extension of the similarity matching approach provides a normative framework that facilitates understanding multi-compartmental neuronal structures and non-Hebbian plasticity found throughout the brain.

[1]  R. Makarov,et al.  Dendrites and Efficiency: Optimizing Performance and Resource Utilization , 2023, ArXiv.

[2]  Eero P. Simoncelli,et al.  Adaptive Whitening in Neural Populations with Gain-modulating Interneurons , 2023, ICML.

[3]  Anirvan M. Sengupta,et al.  Coordinated drift of receptive fields in Hebbian/anti-Hebbian network models during noisy representation learning , 2023, Nature Neuroscience.

[4]  D. Chklovskii,et al.  An online algorithm for contrastive Principal Component Analysis , 2022, ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Fabian A. Mikulasch,et al.  Where is the error? Hierarchical predictive coding through dendritic error computation , 2022, Trends in Neurosciences.

[6]  Anirvan M. Sengupta,et al.  Constrained Predictive Coding as a Biologically Plausible Model of the Cortical Hierarchy , 2022, NeurIPS.

[7]  D. Chklovskii,et al.  A linear discriminant analysis model of imbalanced associative learning in the mushroom body compartment , 2022, bioRxiv.

[8]  D. Chklovskii,et al.  Interneurons accelerate learning dynamics in recurrent neural networks for statistical adaptation , 2022, ICLR.

[9]  M. Larkum Are Dendrites Conceptually Useful? , 2022, Neuroscience.

[10]  Stefano Fusi,et al.  Place cells may simply be memory cells: Memory compression leads to spatial tuning and history dependence , 2021, Proceedings of the National Academy of Sciences.

[11]  Yanis Bahroun,et al.  A Normative and Biologically Plausible Algorithm for Independent Component Analysis , 2021, NeurIPS.

[12]  Siavash Golkar,et al.  Neural optimal feedback control with local learning rules , 2021, NeurIPS.

[13]  D. Chklovskii,et al.  Normative and mechanistic model of an adaptive circuit for efficient encoding and feature extraction , 2021, bioRxiv.

[14]  Vikas Singh,et al.  An Online Riemannian PCA for Stochastic Canonical Correlation Analysis , 2021, NeurIPS.

[15]  Konrad Paul Körding,et al.  Might a Single Neuron Solve Interesting Machine Learning Problems Through Successive Computations on Its Dendritic Tree? , 2021, Neural Computation.

[16]  Anirvan M. Sengupta,et al.  Neural circuits for dynamics-based segmentation of time series , 2021, bioRxiv.

[17]  Yanis Bahroun,et al.  A Similarity-preserving Neural Network Trained on Transformed Images Recapitulates Salient Features of the Fly Motion Detection Circuit , 2021, ArXiv.

[18]  Siavash Golkar,et al.  A biologically plausible neural network for local supervision in cortical microcircuits , 2020, ArXiv.

[19]  D. Chklovskii,et al.  Biologically plausible single-layer networks for nonnegative independent component analysis , 2020, Biological Cybernetics.

[20]  Siavash Golkar,et al.  A biologically plausible neural network for Slow Feature Analysis , 2020, NeurIPS.

[21]  Siavash Golkar,et al.  A simple normative network approximates local non-Hebbian learning in the cortex , 2020, NeurIPS.

[22]  Anirvan M. Sengupta,et al.  A Biologically Plausible Neural Network for Multichannel Canonical Correlation Analysis , 2020, Neural Computation.

[23]  Anirvan M. Sengupta,et al.  Neurons as Canonical Correlation Analyzers , 2020, Frontiers in Computational Neuroscience.

[24]  C. Pehlevan,et al.  Contrastive Similarity Matching for Supervised Learning , 2020, Neural Computation.

[25]  Christine Grienberger,et al.  Synaptic Plasticity Forms and Functions. , 2020, Annual review of neuroscience.

[26]  Katie C. Bittner,et al.  Bidirectional synaptic plasticity rapidly modifies hippocampal representations , 2020, bioRxiv.

[27]  M. Larkum,et al.  Dendritic action potentials and computation in human layer 2/3 cortical neurons , 2020, Science.

[28]  Mien Brabeeba Wang,et al.  ODE-Inspired Analysis for the Biological Version of Oja's Rule in Solving Streaming PCA , 2019, COLT.

[29]  C. Pehlevan,et al.  Structured and Deep Similarity Matching via Structured and Deep Hebbian Networks , 2019, NeurIPS.

[30]  Dmitri B. Chklovskii,et al.  Neuroscience-Inspired Online Unsupervised Learning Algorithms: Artificial neural networks , 2019, IEEE Signal Processing Magazine.

[31]  Ann M. Hermundstad,et al.  Efficient and adaptive sensory codes , 2019, Nature Neuroscience.

[32]  Fakhri Karray,et al.  Eigenvalue and Generalized Eigenvalue Problems: Tutorial , 2019, ArXiv.

[33]  Timothy P Lillicrap,et al.  Dendritic solutions to the credit assignment problem , 2019, Current Opinion in Neurobiology.

[34]  Yoshua Bengio,et al.  Dendritic cortical microcircuits approximate the backpropagation algorithm , 2018, NeurIPS.

[35]  Tomoki Fukai,et al.  Dendritic processing of spontaneous neuronal sequences for single-trial learning , 2018, Scientific Reports.

[36]  Anirvan M. Sengupta,et al.  Manifold-tiling Localized Receptive Fields are Optimal in Similarity-preserving Neural Networks , 2018, bioRxiv.

[37]  James Zou,et al.  Exploring patterns enriched in a dataset with contrastive principal component analysis , 2018, Nature Communications.

[38]  Panayiota Poirazi,et al.  Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators , 2018, Nature Communications.

[39]  Dmitri B. Chklovskii,et al.  A clustering neural network model of insect olfaction , 2017, bioRxiv.

[40]  Dmitri B. Chklovskii,et al.  Blind Nonnegative Source Separation Using Biological Neural Networks , 2017, Neural Computation.

[41]  Anirvan M. Sengupta,et al.  Why Do Similarity Matching Objectives Lead to Hebbian/Anti-Hebbian Networks? , 2017, Neural Computation.

[42]  Andrea Soltoggio,et al.  Online Representation Learning with Single and Multi-layer Hebbian Networks for Image Classification , 2017, ICANN.

[43]  Nathan Srebro,et al.  Stochastic Approximation for Canonical Correlation Analysis , 2017, NIPS.

[44]  Timothy P Lillicrap,et al.  Towards deep learning with segregated dendrites , 2016, eLife.

[45]  Susumu Tonegawa,et al.  Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons , 2015, Nature Neuroscience.

[46]  Tao Hu,et al.  A Hebbian/Anti-Hebbian Neural Network for Linear Subspace Learning: A Derivation from Multidimensional Scaling of Streaming Data , 2015, Neural Computation.

[47]  Mark T. Harnett,et al.  Distribution and Function of HCN Channels in the Apical Dendritic Tuft of Neocortical Pyramidal Neurons , 2015, The Journal of Neuroscience.

[48]  Dmitri B. Chklovskii,et al.  A Hebbian/Anti-Hebbian network derived from online non-negative matrix factorization can cluster and discover sparse features , 2014, 2014 48th Asilomar Conference on Signals, Systems and Computers.

[49]  Lucas C. Parra,et al.  Joint decorrelation, a versatile tool for multichannel data analysis , 2014, NeuroImage.

[50]  J. Cunningham,et al.  Linear dimensionality reduction: survey, insights, and generalizations , 2014, J. Mach. Learn. Res..

[51]  W. Senn,et al.  Learning by the Dendritic Prediction of Somatic Spiking , 2014, Neuron.

[52]  Mark T. Harnett,et al.  Potassium Channels Control the Interaction between Active Dendritic Integration Compartments in Layer 5 Cortical Pyramidal Neurons , 2013, Neuron.

[53]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[54]  H. Sompolinsky,et al.  Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. , 2012, Annual review of neuroscience.

[55]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[56]  Dieter Jaeger,et al.  The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites , 2010, Journal of Computational Neuroscience.

[57]  J. Magee,et al.  Pathway Interactions and Synaptic Plasticity in the Dendritic Tuft Regions of CA1 Pyramidal Neurons , 2009, Neuron.

[58]  Panayiota Poirazi,et al.  Information Processing in Single Cells and Small Networks: Insights from Compartmental Models , 2009 .

[59]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[60]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[61]  Laurenz Wiskott,et al.  Slowness and Sparseness Lead to Place, Head-Direction, and Spatial-View Cells , 2007, PLoS Comput. Biol..

[62]  P. J. Sjöström,et al.  A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons , 2006, Neuron.

[63]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Stephen P. Boyd,et al.  Convex Optimization , 2004, IEEE Transactions on Automatic Control.

[65]  Laurenz Wiskott,et al.  Slow feature analysis yields a rich repertoire of complex cell properties. , 2005, Journal of vision.

[66]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[67]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[68]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[69]  Michael S. Lewicki,et al.  Efficient coding of natural sounds , 2002, Nature Neuroscience.

[70]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[71]  Konrad Paul Kording,et al.  Learning with two sites of synaptic integration , 2000, Network.

[72]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[73]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[74]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[75]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[76]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[77]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[78]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[79]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[80]  Stephen S. Wilson,et al.  Random iterative models , 1996 .

[81]  Terrence J. Sejnowski,et al.  Edges are the Independent Components of Natural Scenes , 1996, NIPS.

[82]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[83]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[84]  S. Sutherland Eye, brain and vision , 1993, Nature.

[85]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[86]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[87]  Todd K. Leen,et al.  Learning in linear feature-discovery networks , 1991, Optics & Photonics.

[88]  Graeme Mitchison,et al.  Removing Time Variation with the Anti-Hebbian Differential Synapse , 1991, Neural Computation.

[89]  J. Barker,et al.  The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[91]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[92]  Todd K. Leen,et al.  Hebbian feature discovery improves classifier efficiency , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[93]  J. Rubner,et al.  A Self-Organizing Network for Principal-Component Analysis , 1989 .

[94]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[95]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[96]  O. Steward,et al.  Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat , 1976, The Journal of comparative neurology.

[97]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[98]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[99]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[100]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[101]  D. Chklovskii,et al.  Biological Learning of Irreducible Representations of Commuting Transformations , 2022, NeurIPS.

[102]  I. Gemp,et al.  The Generalized Eigenvalue Problem as a Nash Equilibrium , 2022, ArXiv.

[103]  Michael I. Jordan,et al.  Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation , 2018, NeurIPS.

[104]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[105]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[106]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[107]  J. Rubner,et al.  Development of feature detectors by self-organization , 2004, Biological Cybernetics.

[108]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[109]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[110]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[111]  P. Foldiak,et al.  Adaptive network for optimal linear feature extraction , 1989, International 1989 Joint Conference on Neural Networks.

[112]  E. Oja,et al.  An Analysis of Convergence for a Learning Version of the Subspace Method , 1983 .

[113]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[114]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.