Bin width selection in multivariate histograms by the combinatorial method
暂无分享,去创建一个
[1] H. P.. Annales de l'Institut Henri Poincaré , 1931, Nature.
[2] L. Schläfli. Gesammelte mathematische Abhandlungen , 1950 .
[3] M. Gessaman. A Consistent Nonparametric Multivariate Density Estimator Based on Statistically Equivalent Blocks , 1970 .
[4] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[5] J. V. Ryzin,et al. A histogram method of density estimation , 1973 .
[6] Helmut Hasse,et al. Mathematische Abhandlungen 3 , 1975 .
[7] J. V. Ryzin,et al. Uniform consistency of a histogram density estimator and modal estimation , 1975 .
[8] Saab Abou-Jaoudé. Conditions nécessaires et suffisantes de convergence L1 en probabilité de l'histogramme pour une densité , 1976 .
[9] Saab Abou-Jaoudé. Sur la convergence L1 et L∞ de l'estimateur de la partition aléatoire pour une densité , 1976 .
[10] R Collins,et al. Maximum entropy histograms , 1977 .
[11] D. W. Scott. On optimal and data based histograms , 1979 .
[12] D. Freedman,et al. On the histogram as a density estimator:L2 theory , 1981 .
[13] M. Rudemo. Empirical Choice of Histograms and Kernel Density Estimators , 1982 .
[14] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[15] The L2-optimal cell width for the histogram , 1985 .
[16] John Van Ryzin,et al. Large sample properties of maximum entropy histograms , 1986, IEEE Trans. Inf. Theory.
[17] Atsuyuki Kogure,et al. Asymptotically Optimal Cells for a Historgram , 1987 .
[18] L. Devroye. A Course in Density Estimation , 1987 .
[19] L. Zhao,et al. Almost sure L 1 -norm convergence for data-based histogram density estimates , 1987 .
[20] C. C. Taylor. Akaike's information criterion and the histogram , 1987 .
[21] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[22] E. Hannan,et al. On stochastic complexity and nonparametric density estimation , 1988 .
[23] Yuichiro Kanazawa. An optimal variable cell histogram , 1988 .
[24] T. Atilgan. On derivaton and application of aic as a data-based criterion for histograms , 1990 .
[25] Peter Hall,et al. Akaike's information criterion and Kullback-Leibler loss for histogram density estimation , 1990 .
[26] L. Zhao,et al. Almost Sure $L_r$-Norm Convergence for Data-Based Histogram Density Estimates , 1991 .
[27] Yuichiro Kanazawa. An Optimal Variable Cell Histogram Based on the Sample Spacings , 1992 .
[28] T. Speed,et al. Data compression and histograms , 1992 .
[29] Yuichiro Kanazawa,et al. Hellinger distance and Akaike's information criterion for the histogram , 1993 .
[30] Hellinger distance and Kullback—Leibler loss for the kernel density estimator , 1993 .
[31] G. Lugosi,et al. Consistency of Data-driven Histogram Methods for Density Estimation and Classification , 1996 .
[32] G. Lugosi,et al. A universally acceptable smoothing factor for kernel density estimates , 1996 .
[33] G. Lugosi,et al. Nonasymptotic universal smoothing factors, kernel complexity and yatracos classes , 1997 .
[34] M. Wand. Data-Based Choice of Histogram Bin Width , 1997 .
[35] P. Massart,et al. Risk bounds for model selection via penalization , 1999 .
[36] Jan W. H. Swanepoel,et al. Simple and effective number-of-bins circumference selectors for a histogram , 1999, Stat. Comput..
[37] Gwenaelle Castellan. Sélection d'histogrammes ou de modèles exponentiels de polynômes par morceaux à l'aide d'un critère de type Akaike , 2000 .
[38] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[39] Luc Devroye,et al. On the risk of estimates for block decreasing densities , 2003 .
[40] Yves Rozenholc,et al. How many bins should be put in a regular histogram , 2006 .