The geometry of Markov diffusion generators
暂无分享,去创建一个
[1] S B Myers,et al. Connections between Differential Geometry and Topology. , 1935, Proceedings of the National Academy of Sciences of the United States of America.
[2] S. Sobolev. On a theorem in functional analysis , 1938 .
[3] E. Schmidt. Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .
[4] P. Levy,et al. Problèmes concrets d'analyse fonctionnelle , 1952 .
[5] J. Nash. Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .
[6] M. Obata. Certain conditions for a Riemannian manifold to be isometric with a sphere , 1962 .
[7] J. Moser. A Harnack inequality for parabolic di2erential equations , 1964 .
[8] The relation between the laplacian and the diameter for manifolds of non-negative curvature , 1968 .
[9] H. McKean. Geometry of Differential Space , 1973 .
[10] Shiu-yuen Cheng,et al. Eigenvalue comparison theorems and its geometric applications , 1975 .
[11] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[12] T. Figiel,et al. The dimension of almost spherical sections of convex bodies , 1976 .
[13] V. Sudakov,et al. Extremal properties of half-spaces for spherically invariant measures , 1978 .
[14] J. M. Oshorn. Proc. Nat. Acad. Sei , 1978 .
[15] R. Osserman. The isoperimetric inequality , 1978 .
[16] M. Gromov. Paul Levy's isoperimetric inequality , 1980 .
[17] O. Rothaus. Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities , 1981 .
[18] C. Mueller,et al. Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere , 1982 .
[19] Thierry Aubin,et al. Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .
[20] A. Ehrhard. Symétrisation dans l'espace de Gauss. , 1983 .
[21] M. Gromov,et al. A topological application of the isoperimetric inequality , 1983 .
[22] S. Ilias. Constantes explicites pour les in'egalit`es de Sobolev sur les vari'et'es riemanniennes compactes , 1983 .
[23] Hongcang Yang,et al. ON THE ESTIMATE OF THE FIRST EIGENVALUE OF A COMPACT RIEMANNIAN MANIFOLD , 1984 .
[24] N. Varopoulos,et al. Hardy-Littlewood theory for semigroups , 1985 .
[25] D. Stroock,et al. Upper bounds for symmetric Markov transition functions , 1986 .
[26] S. Yau,et al. On the parabolic kernel of the Schrödinger operator , 1986 .
[27] Peter Li. Large time behavior of the heat equation on complete manifolds with non-negative Ricci curvature , 1986 .
[28] P. Bérard. Spectral Geometry: Direct and Inverse Problems , 1986 .
[29] O. Rothaus,et al. Hypercontractivity and the Bakry-Emery criterion for compact Lie groups , 1986 .
[30] E. Davies,et al. Heat kernels and spectral theory , 1989 .
[31] E. Lieb. Gaussian kernels have only Gaussian maximizers , 1990 .
[32] Inégalités de Sobolev faibles : un critère Γ2 , 1991 .
[33] Hung-hsi Wu. The Estimate of the First Eigenvalue of a Compact Riemannian Manifold , 1991 .
[34] E. Carlen. Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .
[35] W. Beckner. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[36] P. Kröger. On the spectral gap for compact manifolds , 1992 .
[37] E. Carlen,et al. Sharp constant in Nash's inequality , 1993 .
[38] M. Ledoux. L'algèbre de Lie des gradients itérés d'un générateur markovien , 1993 .
[39] Nicholas T. Varopoulos,et al. Analysis and Geometry on Groups , 1993 .
[40] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[41] L. Saloff‐Coste. Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below , 1994 .
[42] I. Chavel. Riemannian Geometry: Subject Index , 2006 .
[43] M. Ledoux,et al. Sobolev inequalities in disguise , 1995 .
[44] M. Ledoux,et al. Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator , 1996 .
[45] M. Ledoux,et al. Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator , 1996 .
[46] Emmanuel Hebey,et al. Sobolev Spaces on Riemannian Manifolds , 1996 .
[47] Michel Ledoux,et al. Optimal heat kernel bounds under logarithmic Sobolev inequalities , 1997 .
[48] Feng-Yu Wang,et al. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds , 1997 .
[49] É. Fontenas. Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphères , 1997 .
[50] S. Bobkov. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space , 1997 .
[51] Optimal Sobolev Inequalities of Arbitrary Order on Compact Riemannian Manifolds , 1998 .
[52] Olivier Druet,et al. Best constants in Sobolev inequalities , 1998 .
[53] M. Ledoux. On manifolds with non-negative Ricci curvature and Sobolev inequalities , 1999 .
[54] Emmanuel Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .
[55] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities , 1999 .
[56] R. Latala,et al. Between Sobolev and Poincaré , 2000, math/0003043.