The geometry of Markov diffusion generators

Ces notes sont un resume d'un mini-cours presente a l'Ecole Polytechnique Federale de Zurich en novembre 1998. Elles ont pour but d'exposer quelqu'unes des idees geometriques de l'etude des generateurs de diffusion developpees par D. Bakry et ses collaborateurs au cours des dernieres annees. Les notions abstraites de courbure et dimension, qui etendent les definitions geometriques, sont mises a profit dans des demonstrations fonctionnelles de theoremes de comparaison riemanniens. Constantes optimales et modeles de reference forment un aspect essentiel de l'analyse. Ces notes, qui pour l'essentiel ne comportent pas de demonstrations, se proposent de decrire les grandes lignes et les principes generaux de cette etude.

[1]  S B Myers,et al.  Connections between Differential Geometry and Topology. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Sobolev On a theorem in functional analysis , 1938 .

[3]  E. Schmidt Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .

[4]  P. Levy,et al.  Problèmes concrets d'analyse fonctionnelle , 1952 .

[5]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[6]  M. Obata Certain conditions for a Riemannian manifold to be isometric with a sphere , 1962 .

[7]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[8]  The relation between the laplacian and the diameter for manifolds of non-negative curvature , 1968 .

[9]  H. McKean Geometry of Differential Space , 1973 .

[10]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[11]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[12]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[13]  V. Sudakov,et al.  Extremal properties of half-spaces for spherically invariant measures , 1978 .

[14]  J. M. Oshorn Proc. Nat. Acad. Sei , 1978 .

[15]  R. Osserman The isoperimetric inequality , 1978 .

[16]  M. Gromov Paul Levy's isoperimetric inequality , 1980 .

[17]  O. Rothaus Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities , 1981 .

[18]  C. Mueller,et al.  Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere , 1982 .

[19]  Thierry Aubin,et al.  Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .

[20]  A. Ehrhard Symétrisation dans l'espace de Gauss. , 1983 .

[21]  M. Gromov,et al.  A topological application of the isoperimetric inequality , 1983 .

[22]  S. Ilias Constantes explicites pour les in'egalit`es de Sobolev sur les vari'et'es riemanniennes compactes , 1983 .

[23]  Hongcang Yang,et al.  ON THE ESTIMATE OF THE FIRST EIGENVALUE OF A COMPACT RIEMANNIAN MANIFOLD , 1984 .

[24]  N. Varopoulos,et al.  Hardy-Littlewood theory for semigroups , 1985 .

[25]  D. Stroock,et al.  Upper bounds for symmetric Markov transition functions , 1986 .

[26]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[27]  Peter Li Large time behavior of the heat equation on complete manifolds with non-negative Ricci curvature , 1986 .

[28]  P. Bérard Spectral Geometry: Direct and Inverse Problems , 1986 .

[29]  O. Rothaus,et al.  Hypercontractivity and the Bakry-Emery criterion for compact Lie groups , 1986 .

[30]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[31]  E. Lieb Gaussian kernels have only Gaussian maximizers , 1990 .

[32]  Inégalités de Sobolev faibles : un critère Γ2 , 1991 .

[33]  Hung-hsi Wu The Estimate of the First Eigenvalue of a Compact Riemannian Manifold , 1991 .

[34]  E. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .

[35]  W. Beckner Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[36]  P. Kröger On the spectral gap for compact manifolds , 1992 .

[37]  E. Carlen,et al.  Sharp constant in Nash's inequality , 1993 .

[38]  M. Ledoux L'algèbre de Lie des gradients itérés d'un générateur markovien , 1993 .

[39]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[40]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[41]  L. Saloff‐Coste Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below , 1994 .

[42]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[43]  M. Ledoux,et al.  Sobolev inequalities in disguise , 1995 .

[44]  M. Ledoux,et al.  Lévy–Gromov’s isoperimetric inequality for an infinite dimensional diffusion generator , 1996 .

[45]  M. Ledoux,et al.  Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator , 1996 .

[46]  Emmanuel Hebey,et al.  Sobolev Spaces on Riemannian Manifolds , 1996 .

[47]  Michel Ledoux,et al.  Optimal heat kernel bounds under logarithmic Sobolev inequalities , 1997 .

[48]  Feng-Yu Wang,et al.  Logarithmic Sobolev inequalities on noncompact Riemannian manifolds , 1997 .

[49]  É. Fontenas Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphères , 1997 .

[50]  S. Bobkov An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space , 1997 .

[51]  Optimal Sobolev Inequalities of Arbitrary Order on Compact Riemannian Manifolds , 1998 .

[52]  Olivier Druet,et al.  Best constants in Sobolev inequalities , 1998 .

[53]  M. Ledoux On manifolds with non-negative Ricci curvature and Sobolev inequalities , 1999 .

[54]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[55]  M. Ledoux Concentration of measure and logarithmic Sobolev inequalities , 1999 .

[56]  R. Latala,et al.  Between Sobolev and Poincaré , 2000, math/0003043.