Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator

This paper deals with the analog circuit implementation and synchronization of a model consisting of a van der Pol oscillator coupled to a Duffing oscillator. The coupling between the two oscillators is set in a symmetrical way that linearly depends on the difference of the systems solutions (i.e., elastic coupling). The primary motivation of our investigations lays in the fact that coupled attractors of different types might serve as a good model for real systems in nature (e.g., electromechanical, physical, biological, or economic systems). The stability of fixed points is examined. The bifurcation structures of the system are analyzed with particular emphasis on the effects of nonlinearity. An appropriate electronic circuit (analog simulator) is proposed for the investigation of the dynamical behavior of the system. Correspondences are established between the coefficients of the system model and the components of the electronic circuit. A comparison of experimental and numerical results shows a very good agreement. By exploiting recent results on adaptive control theory, a controller is designed that enables both synchronization of two unidirectionally coupled systems and the estimation of unknown parameters of the drive system.

[1]  M. Lakshmanan,et al.  Bifurcation and chaos in the double-well Duffing–van der Pol oscillator: Numerical and analytical studies , 1997, chao-dyn/9709013.

[2]  C. Tchawoua,et al.  Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory , 2010 .

[3]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[4]  Zhang Huaguang,et al.  A new hyperchaotic system and its circuit implementation , 2010 .

[5]  Jiangang Zhang,et al.  Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor , 2009 .

[6]  Nikolai F. Rulkov,et al.  Images of synchronized chaos: Experiments with circuits. , 1996, Chaos.

[7]  Alexander P. Kuznetsov,et al.  Coupled van der Pol–Duffing oscillators: Phase dynamics and structure of synchronization tongues , 2009 .

[8]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[9]  Luigi Fortuna,et al.  Experimental robust synchronization of hyperchaotic circuits , 2009 .

[10]  Uchechukwu E. Vincent,et al.  Chaos Synchronization Using Active Control and Backstepping Control: A Comparative Analysis , 2008 .

[11]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[12]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[13]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[14]  P. Hänggi,et al.  Synchronization of simple chaotic flows , 2001 .

[15]  Hilaire Bertrand Fotsin,et al.  An Adaptive Observer for Chaos Synchronization of a Nonlinear Electronic Circuit , 2006, Int. J. Bifurc. Chaos.

[16]  Yongjian Liu,et al.  Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system , 2011, Nonlinear Dynamics.

[17]  Wuneng Zhou,et al.  Adaptive bidirectionally coupled synchronization of chaotic systems with unknown parameters , 2011 .

[18]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[19]  Kyandoghere Kyamakya,et al.  Behavior of a Self-Sustained Electromechanical Transducer and Routes to Chaos , 2006 .

[20]  V. Balachandran,et al.  Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator , 2009 .

[21]  Diyi Chen,et al.  Synchronization and circuit simulation of a new double-wing chaos , 2012 .

[22]  Parlitz,et al.  Period-doubling cascades and devil's staircases of the driven van der Pol oscillator. , 1987, Physical review. A, General physics.

[23]  Chuan-Kuei Huang,et al.  Implementation of bidirectional chaotic communication systems based on Lorenz circuits , 2004 .

[24]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[25]  鈴木 増雄 A. H. Nayfeh and D. T. Mook: Nonlinear Oscillations, John Wiley, New York and Chichester, 1979, xiv+704ページ, 23.5×16.5cm, 10,150円. , 1980 .

[26]  LequanMin,et al.  A new theorem to synchronization of unified chaotic systems via adaptive control , 2003 .

[27]  Mehdi Roopaei,et al.  Review article on adaptive synchronization of chaotic systems with unknown parameters , 2011 .

[28]  P. Woafo,et al.  Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .

[29]  D. C. Hamill Learning about chaotic circuits with SPICE , 1993 .

[30]  Ahmed S. Elwakil,et al.  Experimental Verification of the Butterfly Attractor in a Modified Lorenz System , 2002, Int. J. Bifurc. Chaos.

[31]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[32]  Y. Uyaroglu,et al.  A new chaotic attractor from general Lorenz system family and its electronic experimental implementation , 2010 .

[33]  Uchechukwu E. Vincent,et al.  Synchronization and bifurcation structures in coupled periodically forced non-identical Duffing oscillators , 2008 .

[34]  Hilaire Bertrand Fotsin,et al.  Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator , 2001 .

[35]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[36]  Hongyan Jia,et al.  Topological horseshoe analysis and the circuit implementation for a four-wing chaotic attractor , 2011 .

[37]  Makoto Itoh Synthesis of Electronic Circuits for Simulating nonlinear Dynamics , 2001, Int. J. Bifurc. Chaos.

[38]  Jinhu Lu,et al.  Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .