Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator
暂无分享,去创建一个
K. Kyamakya | G. H. Kom | G. Kenne | J. Kengne | K. Kyamakya | J. Chedjou | G. Kenné | J. Kengne | G. Kom | J. C. Chedjou
[1] M. Lakshmanan,et al. Bifurcation and chaos in the double-well Duffing–van der Pol oscillator: Numerical and analytical studies , 1997, chao-dyn/9709013.
[2] C. Tchawoua,et al. Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory , 2010 .
[3] Jürgen Kurths,et al. Synchronization: Phase locking and frequency entrainment , 2001 .
[4] Zhang Huaguang,et al. A new hyperchaotic system and its circuit implementation , 2010 .
[5] Jiangang Zhang,et al. Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor , 2009 .
[6] Nikolai F. Rulkov,et al. Images of synchronized chaos: Experiments with circuits. , 1996, Chaos.
[7] Alexander P. Kuznetsov,et al. Coupled van der Pol–Duffing oscillators: Phase dynamics and structure of synchronization tongues , 2009 .
[8] Carroll,et al. Synchronization in chaotic systems. , 1990, Physical review letters.
[9] Luigi Fortuna,et al. Experimental robust synchronization of hyperchaotic circuits , 2009 .
[10] Uchechukwu E. Vincent,et al. Chaos Synchronization Using Active Control and Backstepping Control: A Comparative Analysis , 2008 .
[11] Simin Yu,et al. Generating hyperchaotic Lü attractor via state feedback control , 2006 .
[12] Balth. van der Pol Jun.. LXXXVIII. On “relaxation-oscillations” , 1926 .
[13] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[14] P. Hänggi,et al. Synchronization of simple chaotic flows , 2001 .
[15] Hilaire Bertrand Fotsin,et al. An Adaptive Observer for Chaos Synchronization of a Nonlinear Electronic Circuit , 2006, Int. J. Bifurc. Chaos.
[16] Yongjian Liu,et al. Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system , 2011, Nonlinear Dynamics.
[17] Wuneng Zhou,et al. Adaptive bidirectionally coupled synchronization of chaotic systems with unknown parameters , 2011 .
[18] C. Hayashi,et al. Nonlinear oscillations in physical systems , 1987 .
[19] Kyandoghere Kyamakya,et al. Behavior of a Self-Sustained Electromechanical Transducer and Routes to Chaos , 2006 .
[20] V. Balachandran,et al. Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator , 2009 .
[21] Diyi Chen,et al. Synchronization and circuit simulation of a new double-wing chaos , 2012 .
[22] Parlitz,et al. Period-doubling cascades and devil's staircases of the driven van der Pol oscillator. , 1987, Physical review. A, General physics.
[23] Chuan-Kuei Huang,et al. Implementation of bidirectional chaotic communication systems based on Lorenz circuits , 2004 .
[24] Teh-Lu Liao,et al. Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .
[25] 鈴木 増雄. A. H. Nayfeh and D. T. Mook: Nonlinear Oscillations, John Wiley, New York and Chichester, 1979, xiv+704ページ, 23.5×16.5cm, 10,150円. , 1980 .
[26] LequanMin,et al. A new theorem to synchronization of unified chaotic systems via adaptive control , 2003 .
[27] Mehdi Roopaei,et al. Review article on adaptive synchronization of chaotic systems with unknown parameters , 2011 .
[28] P. Woafo,et al. Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .
[29] D. C. Hamill. Learning about chaotic circuits with SPICE , 1993 .
[30] Ahmed S. Elwakil,et al. Experimental Verification of the Butterfly Attractor in a Modified Lorenz System , 2002, Int. J. Bifurc. Chaos.
[31] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[32] Y. Uyaroglu,et al. A new chaotic attractor from general Lorenz system family and its electronic experimental implementation , 2010 .
[33] Uchechukwu E. Vincent,et al. Synchronization and bifurcation structures in coupled periodically forced non-identical Duffing oscillators , 2008 .
[34] Hilaire Bertrand Fotsin,et al. Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator , 2001 .
[35] Jürgen Kurths,et al. Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.
[36] Hongyan Jia,et al. Topological horseshoe analysis and the circuit implementation for a four-wing chaotic attractor , 2011 .
[37] Makoto Itoh. Synthesis of Electronic Circuits for Simulating nonlinear Dynamics , 2001, Int. J. Bifurc. Chaos.
[38] Jinhu Lu,et al. Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification , 2004 .