Report on the Information Retrieval Festival (IRFest2017)

The Information Retrieval Festival took place in April 2017 in Glasgow. The focus of the workshop was to bring together IR researchers from the various Scottish universities and beyond in order to facilitate more awareness, increased interaction and reflection on the status of the field and its future. The program included an industry session, research talks, demos and posters as well as two keynotes. The first keynote was delivered by Prof. Jaana Kekalenien, who provided a historical, critical reflection of realism in Interactive Information Retrieval Experimentation, while the second keynote was delivered by Prof. Maarten de Rijke, who argued for more Artificial Intelligence usage in IR solutions and deployments. The workshop was followed by a 'Tour de Scotland' where delegates were taken from Glasgow to Aberdeen for the European Conference in Information Retrieval (ECIR 2017)

[1]  Craig MacDonald,et al.  Using Word Embedding to Evaluate the Coherence of Topics from Twitter Data , 2016, SIGIR.

[2]  Diane Rasmussen Pennington,et al.  "The most passionate cover I've seen": emotional information in fan-created U2 music videos , 2016, J. Documentation.

[3]  Emine Yilmaz,et al.  Query Log Mining for Inferring User Tasks and Needs , 2016, ECML/PKDD.

[4]  Leif Azzopardi,et al.  A Methodology for Building a Patent Test Collection for Prior Art Search , 2008, EVIA@NTCIR.

[5]  Jaap Kamps,et al.  Advances in Information Retrieval , 2013, Lecture Notes in Computer Science.

[6]  Diane M. Neal Emotion-based tags in photographic documents: The interplay of text, image, and social influence / Les étiquettes basées sur des émotions dans les documents photographiques: l'interaction entre le texte, l'image et l'influence sociale , 2010 .

[7]  Craig MacDonald,et al.  Matrix Factorisation with Word Embeddings for Rating Prediction on Location-Based Social Networks , 2017, ECIR.

[8]  David Maxwell,et al.  Searching and Stopping: An Analysis of Stopping Rules and Strategies , 2015, CIKM.

[9]  Frank E. Pollick,et al.  Understanding Relevance: An fMRI Study , 2013, ECIR.

[10]  Frank E. Pollick,et al.  Understanding Information Need: An fMRI Study , 2016, SIGIR.

[11]  Özgür Ulusoy,et al.  Integrating social features into mobile local search , 2016, J. Syst. Softw..

[12]  Paul Mulholland,et al.  Applying information foraging theory to understand user interaction with content-based image retrieval , 2010, IIiX.

[13]  Özgür Ulusoy,et al.  Towards detecting media bias by utilizing user comments , 2016, WebSci.

[14]  Leif Azzopardi,et al.  A Topical Approach to Retrievability Bias Estimation , 2016, ICTIR.

[15]  Ismail Sengör Altingövde,et al.  Explicit search result diversification using score and rank aggregation methods , 2015, J. Assoc. Inf. Sci. Technol..

[16]  Kathrin Knautz,et al.  Finding Emotional-Laden Resources on the World Wide Web , 2011, Inf..

[17]  Ludovico Boratto,et al.  State-of-the-Art in Group Recommendation and New Approaches for Automatic Identification of Groups , 2011, Information Retrieval and Mining in Distributed Environments.

[18]  Ismail Sengör Altingövde,et al.  Scalable and Efficient Web Search Result Diversification , 2016, ACM Trans. Web.

[19]  Martha Larson,et al.  Benchmarking News Recommendations: The CLEF NewsREEL Use Case , 2016, SIGF.

[20]  Craig MacDonald,et al.  EAIMS: Emergency Analysis Identification and Management System , 2016, SIGIR.

[21]  David Maxwell,et al.  An Initial Investigation into Fixed and Adaptive Stopping Strategies , 2015, SIGIR.

[22]  Leif Azzopardi,et al.  Best and Fairest: An Empirical Analysis of Retrieval System Bias , 2014, ECIR.

[23]  Bernadette A. Lear Encyclopedia of Humor Studies , 2015 .

[24]  Haiming Liu,et al.  Theory-Based User Modeling for Personalized interactive Information Retrieval , 2016, UMAP.

[25]  Martin Halvey,et al.  Evaluating the Social Acceptability of Voice Based Smartwatch Search , 2016, AIRS.

[26]  Leif Azzopardi,et al.  Relating retrievability, performance and length , 2013, SIGIR.

[27]  Ismail Hakki Toroslu,et al.  Cost-Aware Result Caching for Meta-Search Engines , 2015, SIGIR.

[28]  Craig MacDonald,et al.  Using Part-of-Speech N-grams for Sensitive-Text Classification , 2015, ICTIR.

[29]  Kevin Ong Using Information Foraging Theory to Understand Search Behavior in Different Environments , 2017, CHIIR.

[30]  Emine Yilmaz,et al.  Uncovering Task Based Behavioral Heterogeneities in Online Search Behavior , 2016, SIGIR.

[31]  Craig MacDonald,et al.  Exploring Time-Sensitive Variational Bayesian Inference LDA for Social Media Data , 2017, ECIR.

[32]  Richard Smith,et al.  Peer Review: A Flawed Process at the Heart of Science and Journals , 2006, Journal of the Royal Society of Medicine.

[33]  Yongli Ren,et al.  How People Use the Web in Large Indoor Spaces , 2014, CIKM.

[34]  Joemon M. Jose,et al.  An effective implicit relevance feedback technique using affective, physiological and behavioural features , 2013, SIGIR.

[35]  Ismail Sengör Altingövde,et al.  On the Efficiency of Selective Search , 2017, ECIR.

[36]  Ludovico Boratto Group Recommender Systems: State of the Art, Emerging Aspects and Techniques, and Research Challenges , 2016, ECIR.

[37]  Craig MacDonald,et al.  Towards a Classifier for Digital Sensitivity Review , 2014, ECIR.

[38]  Mark Sanderson,et al.  Language Influences on Tweeter Geolocation , 2017, ECIR.

[39]  Craig MacDonald,et al.  Enhancing Sensitivity Classification with Semantic Features Using Word Embeddings , 2017, ECIR.

[40]  William Ion,et al.  Humour processes for creative engineering design , 2016 .