Activated Carbon, Carbon Blacks and Graphene Based Nanoplatelets as Active Materials for Electrochemical Double Layer Capacitors: A Comparative Study

[1]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[2]  F. Béguin,et al.  Supercapacitors : materials, systems, and applications , 2013 .

[3]  D. A. Brownson,et al.  Graphene electrochemistry: fundamental concepts through to prominent applications. , 2012, Chemical Society reviews.

[4]  Andrea Balducci,et al.  Adiponitrile-based electrochemical double layer capacitor , 2012 .

[5]  P. Kossyrev,et al.  Carbon black supercapacitors employing thin electrodes , 2012 .

[6]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[7]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[8]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[9]  Martin Winter,et al.  Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black , 2011 .

[10]  A. Balducci,et al.  High voltage electrochemical double layer capacitor containing mixtures of ionic liquids and organic carbonate as electrolytes , 2011 .

[11]  Craig E. Banks,et al.  An overview of graphene in energy production and storage applications , 2011 .

[12]  R. Kühnel,et al.  Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries , 2011 .

[13]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[14]  Martin Pumera,et al.  Graphene-based nanomaterials for energy storage , 2011 .

[15]  Mario Conte,et al.  Supercapacitors Technical Requirements for New Applications , 2010 .

[16]  M. Pumera,et al.  Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts , 2010 .

[17]  T. Centeno,et al.  The assessment of surface areas in porous carbons by two model-independent techniques, the DR equation and DFT , 2010 .

[18]  Alexander Wokaun,et al.  Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages , 2010 .

[19]  Alexander Wokaun,et al.  A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages , 2010 .

[20]  A. Mahmood,et al.  Production, properties and potential of graphene , 2010, 1002.0370.

[21]  Pierre-Louis Taberna,et al.  Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors , 2009 .

[22]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[23]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[24]  V. Jovanović,et al.  Electrochemical and capacitive properties of thin-layer carbon black electrodes , 2008 .

[25]  Dominique Massiot,et al.  Causes of supercapacitors ageing in organic electrolyte , 2007 .

[26]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[27]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[28]  Wei Xing,et al.  Superior electric double layer capacitors using ordered mesoporous carbons , 2006 .

[29]  Rüdiger Kötz,et al.  Capacitance limits of high surface area activated carbons for double layer capacitors , 2005 .

[30]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[31]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[32]  F. Beck,et al.  Electrochemical supercapacitors based on industrial carbon blacks in aqueous H2SO4 , 2001 .

[33]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .