Qualitative Temporal and Spatial Reasoning Revisited

Establishing local consistency is one of the main algorithmic techniques in temporal and spatial reasoning. In this area, one of the central questions for the various proposed temporal and spatial constraint languages is whether local consistency implies global consistency. Showing that a constraint language G has this "local-to-global" property implies polynomial-time tractability of the constraint language, and has further pleasant algorithmic consequences. In the present paper, we study the "local-to-global" property by making use of a recently established connection of this property with universal algebra. Specifically, the connection shows that this property is equivalent to the presence of a so-called quasi near-unanimity polymorphism of the constraint language. We obtain new algorithmic results and give very concise proofs of previously known theorems. Our results concern well-known and heavily studied formalisms such as the point algebra and its extensions, Allen's interval algebra, and the spatial reasoning language RCC-5.

[1]  Hubie Chen The Computational Complexity of Quantified Constraint Satisfaction , 2004 .

[2]  Peter B. Ladkin,et al.  On binary constraint problems , 1994, JACM.

[3]  Manuel Bodirsky,et al.  Quantified Equality Constraints , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[4]  P. Jeavons Structural Theory of Automata‚ Semigroups‚ and Universal Algebra , 2003 .

[5]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[6]  Rina Dechter,et al.  From Local to Global Consistency , 1990, Artif. Intell..

[7]  Luis Fariñas del Cerro,et al.  A New Tractable Subclass of the Rectangle Algebra , 1999, IJCAI.

[8]  Alexander Abian,et al.  Categoricity of denumerable atomless Boolean rings , 1972 .

[9]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[10]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[11]  Henry Kautz,et al.  Constraint propagation algorithms: A revised report , 1990 .

[12]  Manuel Bodirsky,et al.  The Core of a Countably Categorical Structure , 2005, STACS.

[13]  David M. Evans Examples of aleph-zero categorical structures , 1994 .

[14]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[15]  Ivo Düntsch,et al.  Relation Algebras and their Application in Temporal and Spatial Reasoning , 2005, Artificial Intelligence Review.

[16]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[17]  Jaroslav Nesetril,et al.  The core of a graph , 1992, Discret. Math..

[18]  Manuel Bodirsky,et al.  Oligomorphic clones , 2007 .

[19]  Bernhard Nebel,et al.  Qualitative Spatial Reasoning Using Constraint Calculi , 2007, Handbook of Spatial Logics.

[20]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[21]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[22]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[23]  Manolis Koubarakis,et al.  Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning , 2001, Theor. Comput. Sci..

[24]  Peter Jeavons,et al.  The Complexity of Constraint Languages , 2006, Handbook of Constraint Programming.

[25]  Manolis Koubarakis,et al.  From Local to Global Consistency in Temporal Constraint Networks , 1995, Theor. Comput. Sci..

[26]  K. A. Baker,et al.  Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems , 1975 .

[27]  P. Jeavons,et al.  The complexity of constraint satisfaction : an algebraic approach. , 2005 .

[28]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[29]  Peter van Beek,et al.  Local and Global Relational Consistency , 1995, Theor. Comput. Sci..

[30]  Brandon Bennett,et al.  Spatial Reasoning with Propositional Logics , 1994, KR.

[31]  Manuel Bodirsky Constraint Satisfaction Problems with Infinite Templates , 2008, Complexity of Constraints.

[32]  Y. Gurevich On Finite Model Theory , 1990 .

[33]  Peter Jonsson,et al.  A Complete Classification of Tractability in RCC-5 , 1997, J. Artif. Intell. Res..

[34]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[35]  Peter van Beek,et al.  Exact and approximate reasoning about temporal relations 1 , 1990, Comput. Intell..

[36]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[37]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[38]  Robin Hirsch,et al.  Relation Algebras of Intervals , 1996, Artif. Intell..

[39]  Manuel Bodirsky,et al.  Datalog and Constraint Satisfaction with Infinite Templates , 2006, STACS.

[40]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[41]  Dov M. Gabbay,et al.  Handbook of Temporal Reasoning in Artificial Intelligence , 2005, Handbook of Temporal Reasoning in Artificial Intelligence.