The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods.

The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families. A multigene tree of 115 newly characterized OR sequences from these eight species and published data for Bos taurus revealed a diverse array of class II OR paralogues in Cetacea. Evolution of the OR gene superfamily in toothed whales (Odontoceti) featured a multitude of independent pseudogenization events, supporting anatomical evidence that odontocetes have lost their olfactory sense. We explored the phylogenetic utility of OR pseudogenes in Cetacea, concentrating on delphinids (oceanic dolphins), the product of a rapid evolutionary radiation that has been difficult to resolve in previous studies of mitochondrial DNA sequences. Phylogenetic analyses of OR pseudogenes using both gene-tree reconciliation and supermatrix methods yielded fully resolved, consistently supported relationships among members of four delphinid subfamilies. Alternative minimizations of gene duplications, gene duplications plus gene losses, deep coalescence events, and nucleotide substitutions plus indels returned highly congruent phylogenetic hypotheses. Novel DNA sequence data for six single-copy nuclear loci and three mitochondrial genes (> 5000 aligned nucleotides) provided an independent test of the OR trees. Nucleotide substitutions and indels in OR pseudogenes showed a very low degree of homoplasy in comparison to mitochondrial DNA and, on average, provided more variation than single-copy nuclear DNA. Our results suggest that phylogenetic analysis of the large OR superfamily will be effective for resolving relationships within Cetacea whether supermatrix or gene-tree reconciliation procedures are used.

[1]  S. Firestein,et al.  The olfactory receptor gene superfamily of the mouse , 2002, Nature Neuroscience.

[2]  Doron Lancet,et al.  The olfactory receptor gene superfamily: data mining, classification, and nomenclature , 2000, Mammalian Genome.

[3]  C. Matthee,et al.  Mining the mammalian genome for artiodactyl systematics. , 2001, Systematic biology.

[4]  Takashi Gojobori,et al.  Patterns of nucleotide substitution in pseudogenes and functional genes , 2005, Journal of Molecular Evolution.

[5]  Gustavo Glusman,et al.  The complete human olfactory subgenome. , 2001, Genome research.

[6]  Wilfried W. de Jong,et al.  Causes of more frequent deletions than insertions in mutations and protein evolution , 1981, Nature.

[7]  G. Moore,et al.  Fitting the gene lineage into its species lineage , 1979 .

[8]  L. Kubatko,et al.  Inconsistency of phylogenetic estimates from concatenated data under coalescence. , 2007, Systematic biology.

[9]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[10]  Mark P. Simmons,et al.  Gaps as characters in sequence-based phylogenetic analyses. , 2000, Systematic biology.

[11]  T P Dohl,et al.  A porpoise hybrid: Tursiops x Steno. , 1974, Journal of mammalogy.

[12]  R. Page,et al.  From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. , 1997, Molecular phylogenetics and evolution.

[13]  Masatoshi Nei,et al.  Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Ron Shamir,et al.  The canine olfactory subgenome. , 2004, Genomics.

[15]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[16]  E. Hoch Olfaction in whales: Evidence from a young odontocete of the late Oligocene North Sea , 2000 .

[17]  Michael M. Miyamoto,et al.  TESTING SPECIES PHYLOGENIES AND PHYLOGENETIC METHODS WITH CONGRUENCE , 1995 .

[18]  A. Berta,et al.  Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. , 2008, Systematic biology.

[19]  T. Kasuya Systematic consideration of recent toothed whales based on the morphology of tympano-periotic bone: , 1973 .

[20]  S. Caballero,et al.  Molecular systematics of South American dolphins Sotalia: sister taxa determination and phylogenetic relationships, with insights into a multi-locus phylogeny of the Delphinidae. , 2008, Molecular phylogenetics and evolution.

[21]  Doron Lancet,et al.  Human specific loss of olfactory receptor genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. A. Machado,et al.  The causes of phylogenetic conflict in a classic Drosophila species group , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  S. Pääbo,et al.  Loss of Olfactory Receptor Genes Coincides with the Acquisition of Full Trichromatic Vision in Primates , 2004, PLoS biology.

[24]  Dannie Durand,et al.  A Hybrid Micro-Macroevolutionary Approach to Gene Tree Reconstruction , 2005, RECOMB.

[25]  M. Nei,et al.  Pseudogenes as a paradigm of neutral evolution , 1981, Nature.

[26]  Mark P. Simmons,et al.  Uninode coding vs gene tree parsimony for phylogenetic reconstruction using duplicate genes. , 2002, Molecular phylogenetics and evolution.

[27]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[28]  K. Nixon,et al.  Phylogeny reconstruction using duplicate genes. , 2000, Molecular biology and evolution.

[29]  M. Nei,et al.  Evolution of olfactory receptor genes in the human genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. William,et al.  Combining data in phylogenetic analysis. , 1996, Trends in ecology & evolution.

[31]  D M Irwin,et al.  Evolution of the cytochrome b gene of mammals. , 1991, Journal of molecular evolution.

[32]  Peter Mombaerts,et al.  Genes and ligands for odorant, vomeronasal and taste receptors , 2004, Nature Reviews Neuroscience.

[33]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[34]  R. Page Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. , 2000, Molecular phylogenetics and evolution.

[35]  Dietland Müller-Schwarze,et al.  Chemical Signals in Vertebrates 3 , 1983 .

[36]  A. Collins,et al.  Evolution of river dolphins , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  Bernd Würsig,et al.  Encyclopedia of Marine Mammals , 2001 .

[38]  M. Miyamoto,et al.  DNA systematics and evolution of the artiodactyl family Bovidae. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Andrew P. Martin,et al.  Body size, metabolic rate, generation time, and the molecular clock. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Retief,et al.  Evolution of protamine P1 genes in mammals , 1995, Journal of Molecular Evolution.

[41]  J. Geisler,et al.  Morphological Evidence for the Phylogeny of Cetacea , 2003, Journal of Mammalian Evolution.

[42]  N. Mundy,et al.  Isolation of novel olfactory receptor genes in marmosets (Callithrix): insights into pseudogene formation and evidence for functional degeneracy in non-human primates. , 2003, Gene.

[43]  P. Arctander,et al.  Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. , 1996, Molecular biology and evolution.

[44]  K. Müller SeqState: primer design and sequence statistics for phylogenetic DNA datasets. , 2005, Applied bioinformatics.

[45]  Roderic D M Page,et al.  Gene tree parsimony vs uninode coding for phylogenetic reconstruction. , 2003, Molecular phylogenetics and evolution.

[46]  J. Bull,et al.  Partitioning and combining data in phylogenetic analysis , 1993 .

[47]  H. Oelschläger Development of the Olfactory and Terminalis Systems in Whales and Dolphins , 1992 .

[48]  Remington Kellogg,et al.  The History of Whales-Their Adaptation to Life in the Water , 1928, The Quarterly Review of Biology.

[49]  R. Page,et al.  How should species phylogenies be inferred from sequence data? , 1999, Systematic biology.

[50]  Olaf R. P. Bininda-Emonds,et al.  Fast Genes and Slow Clades: Comparative Rates of Molecular Evolution in Mammals , 2007, Evolutionary bioinformatics online.

[51]  Heather M. Amrine,et al.  Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. , 2001, Molecular biology and evolution.

[52]  D Graur,et al.  Patterns and rates of indel evolution in processed pseudogenes from humans and murids. , 1997, Gene.

[53]  A. Meyer,et al.  Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes. , 1994, Molecular biology and evolution.

[54]  Y. Shirayama,et al.  The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans , 2007, Biology Letters.

[55]  C. Matthee,et al.  Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective. , 2001, Molecular biology and evolution.

[56]  J. Graves,et al.  Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). , 2000, Molecular biology and evolution.

[57]  Dannie Durand,et al.  A hybrid micro-macroevolutionary approach to gene tree reconstruction. , 2006 .

[58]  H. Breer,et al.  Olfactory receptors in aquatic and terrestrial vertebrates , 1998, Journal of Comparative Physiology A.

[59]  Allan C. Wilson,et al.  Mitochondrial DNA sequences of primates: Tempo and mode of evolution , 2005, Journal of Molecular Evolution.

[60]  Jaa Nylander,et al.  MrModeltest 2.2. Program Distributed by the Author , 2004 .

[61]  A. Blancher,et al.  The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[63]  M. Miyamoto,et al.  Rapid cladogenesis among the pecoran ruminants: Evidence from mitochondrial dna sequences , 1991 .

[64]  E. Douzery,et al.  Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. , 1997, Molecular biology and evolution.

[65]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[66]  J. Gatesy,et al.  The supermatrix approach to systematics. , 2007, Trends in ecology & evolution.

[67]  O. Bininda-Emonds,et al.  The evolution of supertrees. , 2004, Trends in ecology & evolution.

[68]  William F. Perrin,et al.  PHYLOGENETIC RELATIONSHIPS AMONG THE DELPHINID CETACEANS BASED ON FULL CYTOCHROME B SEQUENCES , 1999 .

[69]  R. Adkins,et al.  Multigene phylogeny of the Old World mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. , 2005, Molecular phylogenetics and evolution.

[70]  Michel C. Milinkovitch,et al.  Cetaceans Are Highly Derived Artiodactyls , 1998 .

[71]  N. Okada,et al.  Toothed whale monophyly reassessed by SINE insertion analysis: the absence of lineage sorting effects suggests a small population of a common ancestral species. , 2007, Molecular phylogenetics and evolution.

[72]  C. Muizon Les relations phylogénétiques des Delphinida (Cetacea, Mammalia) , 1988 .

[73]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[74]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[75]  O. Bininda-Emonds,et al.  Trees versus characters and the supertree/supermatrix "paradox". , 2004, Systematic biology.

[76]  Roderic D. M. Page,et al.  Going nuclear: gene family evolution and vertebrate phylogeny reconciled , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[77]  Andrew P. Martin,et al.  Perils of paralogy: using HSP70 genes for inferring organismal phylogenies. , 2002, Systematic biology.

[78]  I. Agnarsson,et al.  Cytochrome b and Bayesian inference of whale phylogeny. , 2006, Molecular phylogenetics and evolution.

[79]  M. Donoghue,et al.  Basal Angiosperm Phylogeny Inferred from Duplicate Phytochromes A and C , 2000, International Journal of Plant Sciences.

[80]  A. Cave,et al.  Note on olfactory activity in mysticetes , 1988 .

[81]  A. Knight,et al.  Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins. , 1997, Molecular phylogenetics and evolution.

[82]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[83]  Roderic D. M. Page,et al.  GeneTree: comparing gene and species phylogenies using reconciled trees , 1998, Bioinform..

[84]  J. Thewissen,et al.  The Emergence of Whales , 1998, Advances in Vertebrate Paleobiology.

[85]  R. Honeycutt,et al.  Multi-locus phylogeny of dolphins in the subfamily Lissodelphininae: character synergy improves phylogenetic resolution , 2006, BMC Evolutionary Biology.

[86]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.