From Top to Down Hierarchical Classification Process with the Candidates' Strategy

While there is a large amount of text data on the Internet, people need to organize the text data with experienced category. However, the flat structure of categories could not satisfy the modern information management. To solve this problem, we propose a hierarchical classification process with a strategy, called candidates, used to relieve the blocking problems. Besides, we establish the description of categories as the supervised information to the hierarchical text classification. Extensive experiments on public corpora demonstrate our models effectiveness and efficiency.

[1]  Thomas Hofmann,et al.  Hierarchical document categorization with support vector machines , 2004, CIKM '04.

[2]  Minyi Guo,et al.  A class-feature-centroid classifier for text categorization , 2009, WWW '09.

[3]  Geoffrey E. Hinton,et al.  Three new graphical models for statistical language modelling , 2007, ICML '07.

[4]  Alex A. Freitas,et al.  A survey of hierarchical classification across different application domains , 2010, Data Mining and Knowledge Discovery.

[5]  Sung-Hyon Myaeng,et al.  Combining global and local information for enhanced deep classification , 2010, SAC '10.

[6]  Geoffrey E. Hinton,et al.  A Scalable Hierarchical Distributed Language Model , 2008, NIPS.

[7]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[8]  Robert M. Seyfarth,et al.  Hierarchical Classification by Rank and Kinship in Baboons , 2003, Science.

[9]  Yan Jia,et al.  Research and Development of Large Scale Hierarchical Classification Problem , 2012 .

[10]  Ming-Wei Chang,et al.  Importance of Semantic Representation: Dataless Classification , 2008, AAAI.

[11]  Jason D. M. Rennie,et al.  Improving Multiclass Text Classification with the Support Vector Machine , 2001 .

[12]  James T. Kwok,et al.  Mandatory Leaf Node Prediction in Hierarchical Multilabel Classification , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[13]  Ee-Peng Lim,et al.  Hierarchical text classification and evaluation , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[14]  Susan T. Dumais,et al.  Hierarchical classification of Web content , 2000, SIGIR '00.

[15]  Qiang Yang,et al.  Deep classification in large-scale text hierarchies , 2008, SIGIR '08.

[16]  Tom M. Mitchell,et al.  Improving Text Classification by Shrinkage in a Hierarchy of Classes , 1998, ICML.

[17]  Chunyan Miao,et al.  An Optimized K-Nearest Neighbor Algorithm for Large Scale Hierarchical Text Classification , 2011 .

[18]  Wai Lam,et al.  Using a generalized instance set for automatic text categorization , 1998, SIGIR '98.

[19]  Yiming Yang,et al.  Support vector machines classification with a very large-scale taxonomy , 2005, SKDD.

[20]  Dan Roth,et al.  On Dataless Hierarchical Text Classification , 2014, AAAI.

[21]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[22]  Yiming Yang,et al.  Recursive regularization for large-scale classification with hierarchical and graphical dependencies , 2013, KDD.

[23]  Miao Duo Hierarchical Text Classification Model Based on Blocking Priori Knowledge , 2010 .

[24]  David L. Waltz,et al.  Classifying news stories using memory based reasoning , 1992, SIGIR '92.

[25]  Qiang Yang,et al.  Deep classifier: automatically categorizing search results into large-scale hierarchies , 2008, WSDM '08.

[26]  Jaideep Srivastava,et al.  Blocking reduction strategies in hierarchical text classification , 2004, IEEE Transactions on Knowledge and Data Engineering.

[27]  Andrew McCallum,et al.  A comparison of event models for naive bayes text classification , 1998, AAAI 1998.

[28]  Joydeep Ghosh,et al.  Integrating support vector machines in a hierarchical output space decomposition framework , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[29]  Yong Yu,et al.  Web-scale classification with naive bayes , 2009, WWW '09.

[30]  Gerard Salton,et al.  Research and Development in Information Retrieval , 1982, Lecture Notes in Computer Science.