Abstractions for Transition Systems with Applications to Stubborn Sets

Partial order reduction covers a range of techniques based on eliminating unnecessary transitions when generating a state space. On the other hand, abstractions replace sets of states of a system with abstract representatives in order to create a smaller state space. This article explores how stubborn sets and abstraction can be combined. We provide examples to provide intuition and expand on some recent results. We provide a classification of abstractions and give some novel results on what is needed to combine abstraction and partial order reduction in a sound way.

[1]  Patrice Godefroid,et al.  Partial-Order Methods for the Verification of Concurrent Systems , 1996, Lecture Notes in Computer Science.

[2]  Hongyang Qu,et al.  Partial Order Reduction for Model Checking Markov Decision Processes under Unconditional Fairness , 2011, 2011 Eighth International Conference on Quantitative Evaluation of SysTems.

[3]  Antti Valmari,et al.  Stubborn sets for reduced state space generation , 1991, Applications and Theory of Petri Nets.

[4]  Antti Valmari,et al.  Stubborn set methods for process algebras , 1997, Partial Order Methods in Verification.

[5]  Doron A. Peled,et al.  All from One, One for All: on Model Checking Using Representatives , 1993, CAV.

[6]  Antti Valmari,et al.  Safety Property-Driven Stubborn Sets , 2016, RP.

[7]  Edmund M. Clarke,et al.  Counterexample-Guided Abstraction Refinement , 2000, CAV.

[8]  Walter Vogler,et al.  Fair Testing and Stubborn Sets , 2016, SPIN.

[9]  Martti Tienari,et al.  Compositional failure-based semantic models for Basic LOTOS , 2005, Formal Aspects of Computing.

[10]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[11]  A. Prasad Sistla,et al.  Symmetry and model checking , 1993, Formal Methods Syst. Des..

[12]  Joost Engelfriet,et al.  Determinacy - (Observation Equivalence = Trace Equivalence) , 1985, Theor. Comput. Sci..

[13]  Dragan Bosnacki,et al.  Partial Order Reduction and Symmetry with Multiple Representatives , 2015, NFM.

[14]  Antti Valmari,et al.  Operational Determinism and Fast Algorithms , 2006, CONCUR.

[15]  Antti Valmari A stubborn attack on state explosion , 1992, Formal Methods Syst. Des..

[16]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[17]  Jun Sun,et al.  Diamonds Are a Girl's Best Friend: Partial Order Reduction for Timed Automata with Abstractions , 2014, CAV.

[18]  Antti Valmari,et al.  Can Stubborn Sets Be Optimal? , 2010, Fundam. Informaticae.

[19]  Alfons Laarman,et al.  Guard-based partial-order reduction , 2013, International Journal on Software Tools for Technology Transfer.

[20]  Jaco Geldenhuys,et al.  Exploring the Scope for Partial Order Reduction , 2009, ATVA.

[21]  A. W. Roscoe,et al.  Practical Partial Order Reduction for CSP , 2015, NFM.

[22]  Henri Hansen,et al.  Compositional Analysis for Weak Stubborn Sets , 2011, 2011 Eleventh International Conference on Application of Concurrency to System Design.

[23]  Edmund M. Clarke,et al.  Model checking and abstraction , 1994, TOPL.

[24]  Antti Valmari,et al.  Stubborn Set Intuition Explained , 2016, PNSE @ Petri Nets.