Overview of CO2 Bioconversion into Third-Generation (3G) Bioethanol—a Patent-Based Scenario

[1]  S. Venkata Mohan,et al.  Emerging innovations for sustainable production of bioethanol and other mercantile products from circular economy perspective. , 2022, Bioresource technology.

[2]  Xuepeng Wang,et al.  Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel. , 2022, Bioresource technology.

[3]  Ashok Pandey,et al.  Biofuel production from microalgae: challenges and chances , 2022, Phytochemistry Reviews.

[4]  Jesus R. Melendez,et al.  Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses , 2022, Renewable and Sustainable Energy Reviews.

[5]  Jo‐Shu Chang,et al.  Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater. , 2022, Bioresource technology.

[6]  R. Kothari,et al.  Lignocellulosic Biomass Valorization for Bioethanol Production: a Circular Bioeconomy Approach , 2022, BioEnergy Research.

[7]  A. K. Gombert,et al.  Blocking Mitophagy Does Not Significantly Improve Fuel Ethanol Production in Bioethanol Yeast Saccharomyces cerevisiae , 2022, Applied and environmental microbiology.

[8]  A. Al-Muhtaseb,et al.  Bioethanol and biodiesel: Bibliometric mapping, policies and future needs , 2021, Renewable and Sustainable Energy Reviews.

[9]  E. Jacob‐Lopes,et al.  Microalgae photobioreactors integrated into combustion processes: A patent-based analysis to map technological trends , 2021, Algal Research.

[10]  J. Druzian,et al.  Technological prospection of microalgae-based biorefinery approach for effluent treatment , 2021, Algal Research.

[11]  M. Pishvaee,et al.  Third-generation biofuel supply chain: A comprehensive review and future research directions , 2021, Journal of Cleaner Production.

[12]  Héctor A. Ruiz,et al.  Macroalgal biomass in terms of third-generation biorefinery concept: Current status and techno-economic analysis – A review , 2021, Bioresource Technology Reports.

[13]  T. Bandyopadhyay,et al.  Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production , 2021 .

[14]  Adriana Longoria,et al.  A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. , 2021, The Science of the total environment.

[15]  R. Barros,et al.  Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production , 2021 .

[16]  C. Nascimento,et al.  Thermodynamic Analysis of Carbon Dioxide Hydrogenation to Formic Acid and Methanol , 2021 .

[17]  D. Gam,et al.  Process Development for the Detoxification of Fermentation Inhibitors from Acid Pretreated Microalgae Hydrolysate , 2021, Molecules.

[18]  W. Du,et al.  Transformation technologies for CO2 utilisation: Current status, challenges and future prospects , 2021 .

[19]  G. Braccio,et al.  Syngas Derived from Lignocellulosic Biomass Gasification as an Alternative Resource for Innovative Bioprocesses , 2020, Processes.

[20]  Juliana Botelho Moreira,et al.  Microalgae starch: A promising raw material for the bioethanol production. , 2020, International journal of biological macromolecules.

[21]  A. D. Moreno,et al.  Process Strategies for the Transition of 1G to Advanced Bioethanol Production , 2020 .

[22]  L. Rossi,et al.  Selective CO2 hydrogenation into methanol in a supercritical flow process , 2020 .

[23]  Laura B. Cardinal,et al.  Mapping Patent Usage in Management Research: The State of Prior Art , 2020 .

[24]  Brian F. Pfleger,et al.  Enhancing Photosynthetic Production of Glycogen-Rich Biomass for Use as a Fermentation Feedstock , 2020, Frontiers in Energy Research.

[25]  Giorgio Triulzi,et al.  Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description , 2020, 2004.13919.

[26]  Oscar Rosales-Calderon,et al.  A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol , 2019, Biotechnology for Biofuels.

[27]  J. Kopecký,et al.  Bioethanol production from microalgae polysaccharides , 2019, Folia Microbiologica.

[28]  S. Velasquez-Orta,et al.  Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production. , 2019, Ecotoxicology and environmental safety.

[29]  M. Ranjith kumar,et al.  Choice of Pretreatment Technology for Sustainable Production of Bioethanol from Lignocellulosic Biomass: Bottle Necks and Recommendations , 2019 .

[30]  Chee Keong Lee,et al.  Nutritional optimization of Arthrospira platensis for starch and Total carbohydrates production , 2019, Biotechnology progress.

[31]  Nada Maamoun,et al.  The Kyoto protocol: Empirical evidence of a hidden success , 2019, Journal of Environmental Economics and Management.

[32]  T. Mahlia,et al.  Techno‐economics and Sensitivity Analysis of Microalgae as Commercial Feedstock for Bioethanol Production , 2019, Environmental Progress & Sustainable Energy.

[33]  J. Chakrabarty,et al.  A review on biological systems for CO2 sequestration: Organisms and their pathways , 2018, Environmental Progress & Sustainable Energy.

[34]  H. Shokrkar,et al.  Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis , 2018, Fuel.

[35]  S. K. Patidar,et al.  Microalgae harvesting techniques: A review. , 2018, Journal of environmental management.

[36]  Yuhan Sun,et al.  Enhancing Carbohydrate Productivity of Chlorella sp. AE10 in Semi-continuous Cultivation and Unraveling the Mechanism by Flow Cytometry , 2018, Applied Biochemistry and Biotechnology.

[37]  M. I. Khan,et al.  The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products , 2018, Microbial Cell Factories.

[38]  J. Sadeghi,et al.  A novel process for CO2 capture from the flue gases to produce urea and ammonia , 2018 .

[39]  Mayur B. Kurade,et al.  Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation , 2017 .

[40]  María Eugenia Sanz Smachetti,et al.  Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol , 2017 .

[41]  Pogaku Ravindra,et al.  A review on third generation bioethanol feedstock , 2016 .

[42]  Mayur B. Kurade,et al.  Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal , 2016 .

[43]  C. Kennes,et al.  Bioethanol production from biomass: carbohydrate vs syngas fermentation , 2016 .

[44]  J. VanderGheynst,et al.  Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella , 2015, Letters in applied microbiology.

[45]  Bala Kiran,et al.  Perspectives of microalgal biofuels as a renewable source of energy. , 2014 .

[46]  F. Bux,et al.  Overview of the potential of microalgae for CO2 sequestration , 2014, International Journal of Environmental Science and Technology.

[47]  Pradeep Verma,et al.  An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products , 2013, 3 Biotech.

[48]  Jürg Vollenweider The effectiveness of international environmental agreements , 2013, International Environmental Agreements: Politics, Law and Economics.

[49]  Seham A. El-Temtamy,et al.  Commercialization potential aspects of microalgae for biofuel production: An overview , 2013 .

[50]  F. Antunes,et al.  Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation , 2012, Journal of biomedicine & biotechnology.

[51]  I. Angelidaki,et al.  Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels , 2012, Applied Microbiology and Biotechnology.

[52]  Steven C. Ricke,et al.  Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. , 2012 .

[53]  Piotr Oleskowicz-Popiel,et al.  The challenge of enzyme cost in the production of lignocellulosic biofuels. , 2012, Biotechnology and bioengineering.

[54]  M. Faure,et al.  Compliance with Global Environmental Policy , 2012 .

[55]  Sunja Cho,et al.  Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. , 2011, Bioresource technology.

[56]  Alya Limayem,et al.  Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations , 2011 .

[57]  Zhaojun Xu,et al.  A potential mechanism of energy‐metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae , 2006, The FEBS journal.

[58]  Yan Lin,et al.  Ethanol fermentation from biomass resources: current state and prospects , 2006, Applied Microbiology and Biotechnology.

[59]  M. E. Sanz Smachetti,et al.  Sucrose-to-ethanol microalgae-based platform using seawater , 2020, Algal Research.

[60]  A. Kingsman,et al.  Heterologous gene expression in Saccharomyces cerevisiae. , 1985, Biotechnology & genetic engineering reviews.