CDIM: Cosmic Dawn Intensity Mapper Final Report

The Cosmic Dawn Intensity Mapper (CDIM) will transform our understanding of the era of reionization when the Universe formed the first stars and galaxies, and UV photons ionized the neutral medium. CDIM goes beyond the capabilities of upcoming facilities by carrying out wide area spectro-imaging surveys, providing redshifts of galaxies and quasars during reionization as well as spectral lines that carry crucial information on their physical properties. CDIM will make use of unprecedented sensitivity to surface brightness to measure the intensity fluctuations of reionization on large-scales to provide a valuable and complementary dataset to 21-cm experiments. The baseline mission concept is an 83-cm infrared telescope equipped with a focal plane of 24 \times 20482 detectors capable of R = 300 spectro-imaging observations over the wavelength range of 0.75 to 7.5 {\mu}m using Linear Variable Filters (LVFs). CDIM provides a large field of view of 7.8 deg2 allowing efficient wide area surveys, and instead of moving instrumental components, spectroscopic mapping is obtained through a shift-and-stare strategy through spacecraft operations. CDIM design and capabilities focus on the needs of detecting faint galaxies and quasars during reionization and intensity fluctuation measurements of key spectral lines, including Lyman-{\alpha} and H{\alpha} radiation from the first stars and galaxies. The design is low risk, carries significant science and engineering margins, and makes use of technologies with high technical readiness level for space observations.

[1]  Masanori Iye,et al.  ACCELERATED EVOLUTION OF THE Lyα LUMINOSITY FUNCTION AT z ≳ 7 REVEALED BY THE SUBARU ULTRA-DEEP SURVEY FOR Lyα EMITTERS AT z = 7.3 , 2014, 1404.6066.

[2]  Randy A. Kimble,et al.  Radiation induced luminescence of the CdZnTe substrate in HgCdTe detectors for WFC3 , 2005, SPIE Optics + Photonics.

[3]  R. Bouwens,et al.  INFERRED Hα FLUX AS A STAR FORMATION RATE INDICATOR AT z ∼ 4–5: IMPLICATIONS FOR DUST PROPERTIES, BURSTINESS, AND THE z = 4–8 STAR FORMATION RATE FUNCTIONS , 2015, 1511.08808.

[4]  Linhua Jiang,et al.  First Results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) Survey: Cosmological Reionization at z ∼ 7 , 2017, 1703.02985.

[5]  P. Cowperthwaite,et al.  Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817 , 2018, The Astrophysical Journal.

[6]  Stuart McMuldroch,et al.  Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission , 2005, SPIE Optics + Photonics.

[7]  L. Ho,et al.  A New Sample of Low-Mass Black Holes in Active Galaxies , 2007, 0707.2617.

[8]  A. Cooray,et al.  INTENSITY MAPPING OF Lyα EMISSION DURING THE EPOCH OF REIONIZATION , 2012, 1205.1493.

[9]  A. Cooray,et al.  Probing the Intergalactic Medium with Lyα and 21 cm Fluctuations , 2016, 1611.09682.

[10]  E. Levesque,et al.  Stellar Population Diagnostics of the Massive Star Binary Fraction , 2018, The Astrophysical Journal.

[11]  J. Dunlop,et al.  KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.

[12]  R. Arendt,et al.  Calibrating Array Detectors , 2000, astro-ph/0002260.

[13]  Asantha Cooray,et al.  PROBING REIONIZATION WITH INTENSITY MAPPING OF MOLECULAR AND FINE-STRUCTURE LINES , 2011, 1101.2892.

[14]  B. Keating,et al.  A Halo Model Approach to the 21 cm and Lyα Cross-correlation , 2017, 1701.07005.

[15]  K. Shimasaku,et al.  Diffuse Lyα haloes around galaxies at z = 2.2–6.6: implications for galaxy formation and cosmic reionization , 2014, 1403.0732.

[16]  C. Matt Bradford,et al.  INTENSITY MAPPING OF THE [C ii] FINE STRUCTURE LINE DURING THE EPOCH OF REIONIZATION , 2011, 1107.3553.

[17]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[18]  L. Pentericci,et al.  Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.

[19]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[20]  L. G. Cook Three-Mirror Anastigmat Used Off-Axis In Aperture And Field , 1979, Other Conferences.

[21]  E. Vanzella,et al.  Can the intergalactic medium cause a rapid drop in Lyα emission at z > 6? , 2014, 1406.6373.

[22]  J. L. Pipher,et al.  Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera , 2016, 1608.04323.

[23]  C. Leitherer,et al.  THE EFFECTS OF STELLAR ROTATION. I. IMPACT ON THE IONIZING SPECTRA AND INTEGRATED PROPERTIES OF STELLAR POPULATIONS , 2012, 1203.5109.

[24]  R. Barbier,et al.  Performance overview of the Euclid infrared focal plane detector subsystems , 2016, Astronomical Telescopes + Instrumentation.

[25]  Astronomy,et al.  Molecular hydrogen and (Fe II) in Active Galactic Nuclei , 2004, 1301.0491.

[26]  Piero Madau,et al.  COSMIC REIONIZATION AFTER PLANCK: COULD QUASARS DO IT ALL? , 2015, 1507.07678.

[27]  H. Philip Stahl,et al.  Multivariable parametric cost model for space and ground telescopes , 2016, Astronomical Telescopes + Instrumentation.

[28]  K. Shimasaku,et al.  Statistical properties of diffuse Lyα haloes around star-forming galaxies at z ∼ 2 , 2015, 1509.09001.

[29]  H. Trac,et al.  SCORCH. I. THE GALAXY–HALO CONNECTION IN THE FIRST BILLION YEARS , 2015, 1507.02685.

[30]  Robert A. Reed,et al.  Radiation environment performance of JWST prototype FPAs , 2004, SPIE Optics + Photonics.

[31]  Zheng Zheng,et al.  Monte Carlo Simulation of Lyα Scattering and Application to Damped Lyα Systems , 2002, astro-ph/0203287.

[32]  L. Cram,et al.  Publications of the Astronomical Society of Australia , 2002 .

[33]  Institute for Advanced Study,et al.  RADIATIVE TRANSFER MODELING OF Lyα EMITTERS. I. STATISTICS OF SPECTRA AND LUMINOSITY , 2009, 0910.2712.

[34]  A. Omont,et al.  STAR FORMATION RATE AND DYNAMICAL MASS OF 108 SOLAR MASS BLACK HOLE HOST GALAXIES AT REDSHIFT 6 , 2015, 1501.07538.

[35]  Min Gyu Kim,et al.  On the origin of near-infrared extragalactic background light anisotropy , 2014, Science.

[36]  E. Ofek,et al.  Spitzer Mid-Infrared Detections of Neutron Star Merger GW170817 Suggests Synthesis of the Heaviest Elements , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[37]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[38]  A. Ferrara,et al.  Formation of Supermassive Black Hole Seeds , 2016, Publications of the Astronomical Society of Australia.

[39]  The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey , 2006, astro-ph/0604554.

[40]  M. Huertas-Company,et al.  The accelerated build-up of the red sequence in high-redshift galaxy clusters , 2016, 1601.07578.

[41]  Luminosity functions of Lyα emitting galaxies and cosmic reionization of hydrogen , 2006, astro-ph/0611195.

[42]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[43]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[44]  A. Myers,et al.  . 4 . z . 6 . 9 with DESI Legacy Imaging Surveys and UKIRT Hemisphere Survey and Quasar Luminosity Function at z ∼ 6 . 7 , 2018, 1810.11926.

[45]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[46]  J. Shull,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 14/09/00 HEATING AND IONIZATION OF THE INTERGALACTIC MEDIUM , 2001 .

[47]  Alexander S. Szalay,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[48]  J. Hennawi,et al.  Evolution of the AGN UV luminosity function from redshift 7.5 , 2018, Monthly Notices of the Royal Astronomical Society.

[49]  Craig McMurtry,et al.  A monolithic 2k × 2k LWIR HgCdTe detector array for passively cooled space missions , 2018, Astronomical Telescopes + Instrumentation.

[50]  R. Salvaterra,et al.  Simulating high‐redshift galaxies , 2010, 1003.3873.

[51]  E. Weigle,et al.  The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu , 2017, 1703.10574.

[52]  Paul A. Lightsey,et al.  James Webb Space Telescope: large deployable cryogenic telescope in space , 2012 .

[53]  Jarron Leisenring,et al.  λ = 2.4 to 5  μm spectroscopy with the James Webb Space Telescope NIRCam instrument , 2017 .

[54]  M. Huertas-Company,et al.  The morphological transformation of red sequence galaxies in the distant cluster XMMU J1229+0151 , 2014, 1401.4641.

[55]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[56]  M. Zaldarriaga,et al.  The effects of reionization on Lyα galaxy surveys , 2005, astro-ph/0507266.

[57]  R. Chary The Stellar Initial Mass Function at the Epoch of Reionization , 2007, 0712.1498.

[58]  J. Gunn,et al.  THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.

[59]  James Aguirre,et al.  INTENSITY MAPPING WITH CARBON MONOXIDE EMISSION LINES AND THE REDSHIFTED 21 cm LINE , 2011, 1104.4800.

[60]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[61]  S. Tulloch Persistence Characterisation of teledyne H2RG detectors , 2018, 1807.05217.

[62]  Jamie D. Phillips,et al.  Growth of HgCdTe for long-wavelength infrared detectors using automated control from spectroscopic ellipsometry measurements , 2001 .

[63]  Judith L. Pipher,et al.  13 micron cutoff HgCdTe detector arrays for space and ground-based astronomy , 2016, Astronomical Telescopes + Instrumentation.

[64]  Judith L. Pipher,et al.  Candidate 10 micron HgCdTe arrays for the NEOCam space mission , 2016, Astronomical Telescopes + Instrumentation.

[65]  D. Calzetti,et al.  The NICMOS Snapshot Survey of Nearby Galaxies , 1999, astro-ph/9903307.

[66]  R. Bouwens,et al.  A REMARKABLY LUMINOUS GALAXY AT Z = 11.1 MEASURED WITH HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY , 2016, 1603.00461.

[67]  Abraham Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .

[68]  R. Fosbury UV/optical properties of z∼2.5 radio galaxies , 2003 .

[69]  Markus Loose,et al.  Space qualification and performance results of the SIDECAR ASIC , 2006, SPIE Astronomical Telescopes + Instrumentation.

[70]  E. Dartois,et al.  Mapping ices in protostellar environments on 1000 AU scales - Methanol-rich ice in the envelope of Serpens SMM 4 , 2004, astro-ph/0407316.

[71]  Markus Loose,et al.  Teledyne Imaging Sensors: infrared imaging technologies for astronomy and civil space , 2008, Astronomical Telescopes + Instrumentation.

[72]  S. Zaroubi,et al.  Line Intensity Mapping during the Epoch of Reionization , 2017, Proceedings of the International Astronomical Union.

[73]  A. Cooray,et al.  FOREGROUND CONTAMINATION IN Lyα INTENSITY MAPPING DURING THE EPOCH OF REIONIZATION , 2013, 1312.2035.

[74]  Edinburgh,et al.  COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.

[75]  Mark Dickinson,et al.  KECK/MOSFIRE SPECTROSCOPY OF z = 7–8 GALAXIES: Lyα EMISSION FROM A GALAXY AT z = 7.66 , 2016, 1602.02160.

[76]  A. Kashlinsky,et al.  COSMIC INFRARED BACKGROUND FLUCTUATIONS AND ZODIACAL LIGHT , 2016, 1604.07291.

[77]  Judith L. Pipher,et al.  Cosmic ray response of megapixel LWIR arrays from TIS , 2013, Astronomical Telescopes and Instrumentation.

[78]  B. Keating,et al.  Observational Constraints on Cosmic Reionization , 2006 .

[79]  T. Nagao,et al.  SILVERRUSH. IV. Lyα luminosity functions at z = 5.7 and 6.6 studied with ∼1300 Lyα emitters on the 14–21 deg2 sky , 2017, 1705.01222.

[80]  S. Finkelstein,et al.  Observational Searches for Star-Forming Galaxies at z > 6 , 2015, Publications of the Astronomical Society of Australia.

[81]  James W. Beletic,et al.  H2RG focal plane array and camera performance update , 2012, Other Conferences.

[82]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[83]  Iap,et al.  ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES , 2010, 1010.4796.

[84]  Cambridge,et al.  Spitzer imaging of i′‐drop galaxies: old stars at z≈ 6 , 2005, astro-ph/0502385.

[85]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[86]  Masayuki Tanaka,et al.  Minor Contribution of Quasars to Ionizing Photon Budget at z ∼ 6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam , 2017, 1709.04413.

[87]  Dominic J. Benford,et al.  Simulations of sample-up-the-ramp for space-based observations of faint sources , 2008, Astronomical Telescopes + Instrumentation.

[88]  M. Dickinson,et al.  z ∼ 4 Hα EMITTERS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: TRACING THE DOMINANT MODE FOR GROWTH OF GALAXIES , 2011 .

[89]  P. Petitjean,et al.  Gamma-Ray Bursts and the Early Star-Formation History , 2016, 1609.00764.

[90]  Z. Haiman,et al.  Are we witnessing the epoch of reionisation at $z=7.1$ from the spectrum of J1120+0641? , 2016, 1606.00441.

[91]  Marco Sirianni,et al.  The Dark Current and Hot Pixel Percentage of James Webb Space Telescope 5 μm Cutoff HgCdTe Detector Arrays as Functions of Temperature , 2011 .

[92]  Z. Haiman,et al.  Second-Generation Objects in the Universe: Radiative Cooling and Collapse of Halos with Virial Temperatures above 104 K , 2001, astro-ph/0108071.

[93]  A. Coil,et al.  THE MOSDEF SURVEY: OPTICAL ACTIVE GALACTIC NUCLEUS DIAGNOSTICS AT z ∼ 2.3 , 2014, 1409.6522.

[94]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[95]  T. Greif,et al.  The First Stars , 2003, astro-ph/0311019.

[96]  B. Greig,et al.  The global history of reionization , 2016, 1605.05374.

[97]  X.Chen,et al.  The Cosmic Dawn and Epoch of Reionization with the Square Kilometre Array , 2015, 1505.07568.

[98]  D. R. DeBoer,et al.  Hydrogen Epoch of Reionization Array (HERA) , 2016, 1606.07473.

[99]  A. Coil,et al.  THE MOSDEF SURVEY: AGN MULTI-WAVELENGTH IDENTIFICATION, SELECTION BIASES, AND HOST GALAXY PROPERTIES , 2016, 1608.05890.

[100]  J. Baldwin,et al.  CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS. , 1981 .

[101]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[102]  I. McGreer,et al.  Model-independent evidence in favour of an end to reionization by z ≈ 6 , 2014, 1411.5375.

[103]  Eli Visbal,et al.  Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines , 2010, 1008.3178.

[104]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[105]  J. Gunn,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6 , 2018, The Astrophysical Journal.

[106]  M. Hauser The Cosmic Infrared Background , 1992 .

[107]  J. Dunlop,et al.  No evidence for a significant AGN contribution to cosmic hydrogen reionization , 2017, 1704.07750.

[108]  Hervé Carfantan,et al.  Performances of the Planck-HFI cryogenic thermal control system , 2006, SPIE Astronomical Telescopes + Instrumentation.

[109]  A. Goulding,et al.  Towards a complete census of AGN in nearby Galaxies: a large population of optically unidentified AGN , 2009, 0906.0772.

[110]  Stuart Bowyer,et al.  The 1997 reference of diffuse night sky brightness , 1998 .

[111]  A. Mesinger,et al.  Inhomogeneous recombinations during cosmic reionization , 2014, 1402.2298.

[112]  O. Doré,et al.  INTENSITY MAPPING ACROSS COSMIC TIMES WITH THE Lyα LINE , 2013, 1309.2295.

[113]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[114]  A. Fontana,et al.  ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z ∼ 3–4: LOOKING FOR ANALOGS OF “STELLAR RE-IONIZERS” , 2012, 1201.5642.

[115]  Judith L. Pipher,et al.  Development of sensitive long-wave infrared detector arrays for passively cooled space missions , 2013, 1306.6897.

[116]  R. Chary,et al.  DISSECTION OF Hα EMITTERS : LOW-z ANALOGS OF z > 4 STAR-FORMING GALAXIES , 2012, 1205.0949.

[117]  L. Kewley,et al.  THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME , 2013, 1307.0508.

[118]  A. Ferrara,et al.  Probing high-redshift galaxies with Lyα intensity mapping , 2015, 1506.08838.