CDIM: Cosmic Dawn Intensity Mapper Final Report
暂无分享,去创建一个
J. Rhodes | Xiaohui Fan | Zheng Zheng | H. Trac | S. Finkelstein | R. Cen | G. Fazio | N. Raouf | R. Chary | O. Dor'e | M. Zemcov | M. Shannon | A. Cooray | P. Morrissey | H. Nayyeri | Tzu-Ching Chang | S. Unwin | Marta B. Silva | C. Heneka | Hao-Yi Wu | Gordon Wu | S. Lipscy | Raphael Sadoun | Andrew Scott Coffey | Bomee Lee | P. Linden | X. Fan | Tzu-Ching Chang
[1] Masanori Iye,et al. ACCELERATED EVOLUTION OF THE Lyα LUMINOSITY FUNCTION AT z ≳ 7 REVEALED BY THE SUBARU ULTRA-DEEP SURVEY FOR Lyα EMITTERS AT z = 7.3 , 2014, 1404.6066.
[2] Randy A. Kimble,et al. Radiation induced luminescence of the CdZnTe substrate in HgCdTe detectors for WFC3 , 2005, SPIE Optics + Photonics.
[3] R. Bouwens,et al. INFERRED Hα FLUX AS A STAR FORMATION RATE INDICATOR AT z ∼ 4–5: IMPLICATIONS FOR DUST PROPERTIES, BURSTINESS, AND THE z = 4–8 STAR FORMATION RATE FUNCTIONS , 2015, 1511.08808.
[4] Linhua Jiang,et al. First Results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) Survey: Cosmological Reionization at z ∼ 7 , 2017, 1703.02985.
[5] P. Cowperthwaite,et al. Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817 , 2018, The Astrophysical Journal.
[6] Stuart McMuldroch,et al. Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission , 2005, SPIE Optics + Photonics.
[7] L. Ho,et al. A New Sample of Low-Mass Black Holes in Active Galaxies , 2007, 0707.2617.
[8] A. Cooray,et al. INTENSITY MAPPING OF Lyα EMISSION DURING THE EPOCH OF REIONIZATION , 2012, 1205.1493.
[9] A. Cooray,et al. Probing the Intergalactic Medium with Lyα and 21 cm Fluctuations , 2016, 1611.09682.
[10] E. Levesque,et al. Stellar Population Diagnostics of the Massive Star Binary Fraction , 2018, The Astrophysical Journal.
[11] J. Dunlop,et al. KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.
[12] R. Arendt,et al. Calibrating Array Detectors , 2000, astro-ph/0002260.
[13] Asantha Cooray,et al. PROBING REIONIZATION WITH INTENSITY MAPPING OF MOLECULAR AND FINE-STRUCTURE LINES , 2011, 1101.2892.
[14] B. Keating,et al. A Halo Model Approach to the 21 cm and Lyα Cross-correlation , 2017, 1701.07005.
[15] K. Shimasaku,et al. Diffuse Lyα haloes around galaxies at z = 2.2–6.6: implications for galaxy formation and cosmic reionization , 2014, 1403.0732.
[16] C. Matt Bradford,et al. INTENSITY MAPPING OF THE [C ii] FINE STRUCTURE LINE DURING THE EPOCH OF REIONIZATION , 2011, 1107.3553.
[17] Robert H. Becker,et al. Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.
[18] L. Pentericci,et al. Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.
[19] M. Dickinson,et al. Cosmic Star-Formation History , 1996, 1403.0007.
[20] L. G. Cook. Three-Mirror Anastigmat Used Off-Axis In Aperture And Field , 1979, Other Conferences.
[21] E. Vanzella,et al. Can the intergalactic medium cause a rapid drop in Lyα emission at z > 6? , 2014, 1406.6373.
[22] J. L. Pipher,et al. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera , 2016, 1608.04323.
[23] C. Leitherer,et al. THE EFFECTS OF STELLAR ROTATION. I. IMPACT ON THE IONIZING SPECTRA AND INTEGRATED PROPERTIES OF STELLAR POPULATIONS , 2012, 1203.5109.
[24] R. Barbier,et al. Performance overview of the Euclid infrared focal plane detector subsystems , 2016, Astronomical Telescopes + Instrumentation.
[25] Astronomy,et al. Molecular hydrogen and (Fe II) in Active Galactic Nuclei , 2004, 1301.0491.
[26] Piero Madau,et al. COSMIC REIONIZATION AFTER PLANCK: COULD QUASARS DO IT ALL? , 2015, 1507.07678.
[27] H. Philip Stahl,et al. Multivariable parametric cost model for space and ground telescopes , 2016, Astronomical Telescopes + Instrumentation.
[28] K. Shimasaku,et al. Statistical properties of diffuse Lyα haloes around star-forming galaxies at z ∼ 2 , 2015, 1509.09001.
[29] H. Trac,et al. SCORCH. I. THE GALAXY–HALO CONNECTION IN THE FIRST BILLION YEARS , 2015, 1507.02685.
[30] Robert A. Reed,et al. Radiation environment performance of JWST prototype FPAs , 2004, SPIE Optics + Photonics.
[31] Zheng Zheng,et al. Monte Carlo Simulation of Lyα Scattering and Application to Damped Lyα Systems , 2002, astro-ph/0203287.
[32] L. Cram,et al. Publications of the Astronomical Society of Australia , 2002 .
[33] Institute for Advanced Study,et al. RADIATIVE TRANSFER MODELING OF Lyα EMITTERS. I. STATISTICS OF SPECTRA AND LUMINOSITY , 2009, 0910.2712.
[34] A. Omont,et al. STAR FORMATION RATE AND DYNAMICAL MASS OF 108 SOLAR MASS BLACK HOLE HOST GALAXIES AT REDSHIFT 6 , 2015, 1501.07538.
[35] Min Gyu Kim,et al. On the origin of near-infrared extragalactic background light anisotropy , 2014, Science.
[36] E. Ofek,et al. Spitzer Mid-Infrared Detections of Neutron Star Merger GW170817 Suggests Synthesis of the Heaviest Elements , 2018, Monthly Notices of the Royal Astronomical Society: Letters.
[37] V. Narayanan,et al. A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.
[38] A. Ferrara,et al. Formation of Supermassive Black Hole Seeds , 2016, Publications of the Astronomical Society of Australia.
[39] The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey , 2006, astro-ph/0604554.
[40] M. Huertas-Company,et al. The accelerated build-up of the red sequence in high-redshift galaxy clusters , 2016, 1601.07578.
[41] Luminosity functions of Lyα emitting galaxies and cosmic reionization of hydrogen , 2006, astro-ph/0611195.
[42] Jr.,et al. The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.
[43] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[44] A. Myers,et al. . 4 . z . 6 . 9 with DESI Legacy Imaging Surveys and UKIRT Hemisphere Survey and Quasar Luminosity Function at z ∼ 6 . 7 , 2018, 1810.11926.
[45] R. Wechsler,et al. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.
[46] J. Shull,et al. Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 14/09/00 HEATING AND IONIZATION OF THE INTERGALACTIC MEDIUM , 2001 .
[47] Alexander S. Szalay,et al. Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.
[48] J. Hennawi,et al. Evolution of the AGN UV luminosity function from redshift 7.5 , 2018, Monthly Notices of the Royal Astronomical Society.
[49] Craig McMurtry,et al. A monolithic 2k × 2k LWIR HgCdTe detector array for passively cooled space missions , 2018, Astronomical Telescopes + Instrumentation.
[50] R. Salvaterra,et al. Simulating high‐redshift galaxies , 2010, 1003.3873.
[51] E. Weigle,et al. The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu , 2017, 1703.10574.
[52] Paul A. Lightsey,et al. James Webb Space Telescope: large deployable cryogenic telescope in space , 2012 .
[53] Jarron Leisenring,et al. λ = 2.4 to 5 μm spectroscopy with the James Webb Space Telescope NIRCam instrument , 2017 .
[54] M. Huertas-Company,et al. The morphological transformation of red sequence galaxies in the distant cluster XMMU J1229+0151 , 2014, 1401.4641.
[55] A. Cimatti,et al. NICMOS measurements of the near-infrared background , 2007, 0712.2880.
[56] M. Zaldarriaga,et al. The effects of reionization on Lyα galaxy surveys , 2005, astro-ph/0507266.
[57] R. Chary. The Stellar Initial Mass Function at the Epoch of Reionization , 2007, 0712.1498.
[58] J. Gunn,et al. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. III. MODEL CALIBRATION, COMPARISON, AND EVALUATION , 2009, 0911.3151.
[59] James Aguirre,et al. INTENSITY MAPPING WITH CARBON MONOXIDE EMISSION LINES AND THE REDSHIFTED 21 cm LINE , 2011, 1104.4800.
[60] S. Tremaine,et al. Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.
[61] S. Tulloch. Persistence Characterisation of teledyne H2RG detectors , 2018, 1807.05217.
[62] Jamie D. Phillips,et al. Growth of HgCdTe for long-wavelength infrared detectors using automated control from spectroscopic ellipsometry measurements , 2001 .
[63] Judith L. Pipher,et al. 13 micron cutoff HgCdTe detector arrays for space and ground-based astronomy , 2016, Astronomical Telescopes + Instrumentation.
[64] Judith L. Pipher,et al. Candidate 10 micron HgCdTe arrays for the NEOCam space mission , 2016, Astronomical Telescopes + Instrumentation.
[65] D. Calzetti,et al. The NICMOS Snapshot Survey of Nearby Galaxies , 1999, astro-ph/9903307.
[66] R. Bouwens,et al. A REMARKABLY LUMINOUS GALAXY AT Z = 11.1 MEASURED WITH HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY , 2016, 1603.00461.
[67] Abraham Loeb,et al. In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .
[68] R. Fosbury. UV/optical properties of z∼2.5 radio galaxies , 2003 .
[69] Markus Loose,et al. Space qualification and performance results of the SIDECAR ASIC , 2006, SPIE Astronomical Telescopes + Instrumentation.
[70] E. Dartois,et al. Mapping ices in protostellar environments on 1000 AU scales - Methanol-rich ice in the envelope of Serpens SMM 4 , 2004, astro-ph/0407316.
[71] Markus Loose,et al. Teledyne Imaging Sensors: infrared imaging technologies for astronomy and civil space , 2008, Astronomical Telescopes + Instrumentation.
[72] S. Zaroubi,et al. Line Intensity Mapping during the Epoch of Reionization , 2017, Proceedings of the International Astronomical Union.
[73] A. Cooray,et al. FOREGROUND CONTAMINATION IN Lyα INTENSITY MAPPING DURING THE EPOCH OF REIONIZATION , 2013, 1312.2035.
[74] Edinburgh,et al. COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.
[75] Mark Dickinson,et al. KECK/MOSFIRE SPECTROSCOPY OF z = 7–8 GALAXIES: Lyα EMISSION FROM A GALAXY AT z = 7.66 , 2016, 1602.02160.
[76] A. Kashlinsky,et al. COSMIC INFRARED BACKGROUND FLUCTUATIONS AND ZODIACAL LIGHT , 2016, 1604.07291.
[77] Judith L. Pipher,et al. Cosmic ray response of megapixel LWIR arrays from TIS , 2013, Astronomical Telescopes and Instrumentation.
[78] B. Keating,et al. Observational Constraints on Cosmic Reionization , 2006 .
[79] T. Nagao,et al. SILVERRUSH. IV. Lyα luminosity functions at z = 5.7 and 6.6 studied with ∼1300 Lyα emitters on the 14–21 deg2 sky , 2017, 1705.01222.
[80] S. Finkelstein,et al. Observational Searches for Star-Forming Galaxies at z > 6 , 2015, Publications of the Astronomical Society of Australia.
[81] James W. Beletic,et al. H2RG focal plane array and camera performance update , 2012, Other Conferences.
[82] Xiaohui Fan,et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.
[83] Iap,et al. ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES , 2010, 1010.4796.
[84] Cambridge,et al. Spitzer imaging of i′‐drop galaxies: old stars at z≈ 6 , 2005, astro-ph/0502385.
[85] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[86] Masayuki Tanaka,et al. Minor Contribution of Quasars to Ionizing Photon Budget at z ∼ 6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam , 2017, 1709.04413.
[87] Dominic J. Benford,et al. Simulations of sample-up-the-ramp for space-based observations of faint sources , 2008, Astronomical Telescopes + Instrumentation.
[88] M. Dickinson,et al. z ∼ 4 Hα EMITTERS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: TRACING THE DOMINANT MODE FOR GROWTH OF GALAXIES , 2011 .
[89] P. Petitjean,et al. Gamma-Ray Bursts and the Early Star-Formation History , 2016, 1609.00764.
[90] Z. Haiman,et al. Are we witnessing the epoch of reionisation at $z=7.1$ from the spectrum of J1120+0641? , 2016, 1606.00441.
[91] Marco Sirianni,et al. The Dark Current and Hot Pixel Percentage of James Webb Space Telescope 5 μm Cutoff HgCdTe Detector Arrays as Functions of Temperature , 2011 .
[92] Z. Haiman,et al. Second-Generation Objects in the Universe: Radiative Cooling and Collapse of Halos with Virial Temperatures above 104 K , 2001, astro-ph/0108071.
[93] A. Coil,et al. THE MOSDEF SURVEY: OPTICAL ACTIVE GALACTIC NUCLEUS DIAGNOSTICS AT z ∼ 2.3 , 2014, 1409.6522.
[94] M. Pettini,et al. [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.
[95] T. Greif,et al. The First Stars , 2003, astro-ph/0311019.
[96] B. Greig,et al. The global history of reionization , 2016, 1605.05374.
[97] X.Chen,et al. The Cosmic Dawn and Epoch of Reionization with the Square Kilometre Array , 2015, 1505.07568.
[98] D. R. DeBoer,et al. Hydrogen Epoch of Reionization Array (HERA) , 2016, 1606.07473.
[99] A. Coil,et al. THE MOSDEF SURVEY: AGN MULTI-WAVELENGTH IDENTIFICATION, SELECTION BIASES, AND HOST GALAXY PROPERTIES , 2016, 1608.05890.
[100] J. Baldwin,et al. CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS. , 1981 .
[101] S. Okamura,et al. STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.
[102] I. McGreer,et al. Model-independent evidence in favour of an end to reionization by z ≈ 6 , 2014, 1411.5375.
[103] Eli Visbal,et al. Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines , 2010, 1008.3178.
[104] Nimish Hathi,et al. THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.
[105] J. Gunn,et al. Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6 , 2018, The Astrophysical Journal.
[106] M. Hauser. The Cosmic Infrared Background , 1992 .
[107] J. Dunlop,et al. No evidence for a significant AGN contribution to cosmic hydrogen reionization , 2017, 1704.07750.
[108] Hervé Carfantan,et al. Performances of the Planck-HFI cryogenic thermal control system , 2006, SPIE Astronomical Telescopes + Instrumentation.
[109] A. Goulding,et al. Towards a complete census of AGN in nearby Galaxies: a large population of optically unidentified AGN , 2009, 0906.0772.
[110] Stuart Bowyer,et al. The 1997 reference of diffuse night sky brightness , 1998 .
[111] A. Mesinger,et al. Inhomogeneous recombinations during cosmic reionization , 2014, 1402.2298.
[112] O. Doré,et al. INTENSITY MAPPING ACROSS COSMIC TIMES WITH THE Lyα LINE , 2013, 1309.2295.
[113] R. B. Barreiro,et al. Planck 2018 results , 2018, Astronomy & Astrophysics.
[114] A. Fontana,et al. ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z ∼ 3–4: LOOKING FOR ANALOGS OF “STELLAR RE-IONIZERS” , 2012, 1201.5642.
[115] Judith L. Pipher,et al. Development of sensitive long-wave infrared detector arrays for passively cooled space missions , 2013, 1306.6897.
[116] R. Chary,et al. DISSECTION OF Hα EMITTERS : LOW-z ANALOGS OF z > 4 STAR-FORMING GALAXIES , 2012, 1205.0949.
[117] L. Kewley,et al. THEORETICAL EVOLUTION OF OPTICAL STRONG LINES ACROSS COSMIC TIME , 2013, 1307.0508.
[118] A. Ferrara,et al. Probing high-redshift galaxies with Lyα intensity mapping , 2015, 1506.08838.