Novel algorithms for analyzing the robustness of difference coarrays to sensor failures

Abstract Sparse arrays have drawn attention because they can identify O ( N 2 ) uncorrelated source directions using N physical sensors, whereas uniform linear arrays (ULA) find at most N − 1 sources. The main reason is that the difference coarray, defined as the set of differences between sensor locations, has size of O ( N 2 ) for some sparse arrays. However, the performance of sparse arrays may degrade significantly under sensor failures. In the literature, the k-essentialness property characterizes the patterns of k sensor failures that change the difference coarray. Based on this concept, the k-essential family, the k-fragility, and the k-essential Sperner family provide insights into the robustness of arrays. This paper proposes novel algorithms for computing these attributes. The first algorithm computes the k-essential Sperner family without enumerating all possible k-essential subarrays. With this information, the second algorithm finds the k-essential family first and the k-fragility next. These algorithms are applicable to any 1-D array. However, for robust array design, fast computation for the k-fragility is preferred. For this reason, a simple expression associated with the k-essential Sperner family is proposed to be a tighter lower bound for the k-fragility than the previous result. Numerical examples validate the proposed algorithms and the presented lower bound.

[1]  Athanassios Manikas,et al.  Investigation of array robustness to sensor failure , 2005, J. Frankl. Inst..

[2]  A. Massa,et al.  On the Robustness to Element Failures of Linear ADS-Thinned Arrays , 2011, IEEE Transactions on Antennas and Propagation.

[3]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .

[4]  Yonina C. Eldar,et al.  Direction of Arrival Estimation Using Co-Prime Arrays: A Super Resolution Viewpoint , 2013, IEEE Transactions on Signal Processing.

[5]  Todd Silvestri Complex System Reliability , 2014 .

[6]  P. P. Vaidyanathan,et al.  Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom , 2010, IEEE Transactions on Signal Processing.

[7]  Ronald N. Bracewell,et al.  Radio Astronomy Techniques , 1962 .

[8]  L. Godara Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations , 1997, Proc. IEEE.

[9]  Arye Nehorai,et al.  Coarrays, MUSIC, and the Cramér–Rao Bound , 2016, IEEE Transactions on Signal Processing.

[10]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[11]  Braham Himed,et al.  Sparsity-based DOA estimation using co-prime arrays , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  Yimin Zhang,et al.  Generalized Coprime Array Configurations for Direction-of-Arrival Estimation , 2015, IEEE Transactions on Signal Processing.

[13]  P. P. Vaidyanathan,et al.  Optimizing Minimum Redundancy Arrays for Robustness , 2018, 2018 52nd Asilomar Conference on Signals, Systems, and Computers.

[14]  Joseph R. Guerci,et al.  Space-Time Adaptive Processing for Radar , 2003 .

[15]  P. P. Vaidyanathan,et al.  Sparse Sensing With Co-Prime Samplers and Arrays , 2011, IEEE Transactions on Signal Processing.

[16]  T. Minimum-Redundancy Linear Arrays , 2022 .

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[19]  P. P. Vaidyanathan,et al.  Remarks on the Spatial Smoothing Step in Coarray MUSIC , 2015, IEEE Signal Processing Letters.

[20]  Michael Muma,et al.  Robust source number enumeration for r-dimensional arrays in case of brief sensor failures , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  P. P. Vaidyanathan,et al.  Robustness of Difference Coarrays of Sparse Arrays to Sensor Failures—Part II: Array Geometries , 2019, IEEE Transactions on Signal Processing.

[22]  Douglas A. Gray,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Trans. Signal Process..

[23]  P. P. Vaidyanathan,et al.  Robustness of Difference Coarrays of Sparse Arrays to Sensor Failures—Part I: A Theory Motivated by Coarray MUSIC , 2019, IEEE Transactions on Signal Processing.

[24]  P. P. Vaidyanathan,et al.  Super Nested Arrays: Linear Sparse Arrays With Reduced Mutual Coupling—Part I: Fundamentals , 2016, IEEE Transactions on Signal Processing.

[25]  P. P. Vaidyanathan,et al.  Pushing the Limits of Sparse Support Recovery Using Correlation Information , 2015, IEEE Transactions on Signal Processing.

[26]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[27]  Arye Nehorai,et al.  Direction finding using sparse linear arrays with missing data , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[28]  P. Saratchandran,et al.  Direction of Arrival (DoA) Estimation Under Array Sensor Failures Using a Minimal Resource Allocation Neural Network , 2007, IEEE Transactions on Antennas and Propagation.

[29]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[30]  G.S. Bloom,et al.  Applications of numbered undirected graphs , 1977, Proceedings of the IEEE.

[31]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[32]  Y. Bar-Ness,et al.  A new approach to array geometry for improved spatial spectrum estimation , 1985, Proceedings of the IEEE.

[33]  K. Engel Sperner Theory , 1996 .

[34]  M. Ishiguro Minimum redundancy linear arrays for a large number of antennas , 1980 .

[35]  P. Vaidyanathan,et al.  Coprime sampling and the music algorithm , 2011, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[36]  R. T. Hoctor,et al.  The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging , 1990, Proc. IEEE.

[37]  C. Ruf Numerical annealing of low-redundancy linear arrays , 1993 .

[38]  P. O'Connor,et al.  Practical Reliability Engineering , 1981 .

[39]  P. Rocca,et al.  Reliable Diagnosis of Large Linear Arrays—A Bayesian Compressive Sensing Approach , 2012, IEEE Transactions on Antennas and Propagation.