A general methodology for deriving shear constrained Reissner‐Mindlin plate elements
暂无分享,去创建一个
Eugenio Oñate | O. C. Zienkiewicz | Robert L. Taylor | Benjamín Suárez | E. Oñate | R. Taylor | B. Suárez
[1] O. C. Zienkiewicz,et al. Reduced integration technique in general analysis of plates and shells , 1971 .
[2] Gangan Prathap,et al. Field‐ and edge‐consistency synthesis of A 4‐noded quadrilateral plate bending element , 1988 .
[3] O. C. Zienkiewicz,et al. Analysis of thick and thin shell structures by curved finite elements , 1970 .
[4] K. Bathe,et al. A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .
[5] K. Bathe,et al. A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .
[6] O. C. Zienkiewicz,et al. Plate bending elements with discrete constraints: New triangular elements , 1990 .
[7] Atef F. Saleeb,et al. A mixed formulation of C0‐linear triangular plate/shell element—the role of edge shear constraints , 1988 .
[8] D. Malkus,et al. Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .
[9] O. C. Zienkiewicz,et al. Three‐field mixed approximation and the plate bending problem , 1987 .
[10] O. C. Zienkiewicz,et al. Consistent Formulation of Shear Constrained Reissner-Mindlin Plate Elements , 1990 .
[11] O. C. Zienkiewicz,et al. A robust triangular plate bending element of the Reissner–Mindlin type , 1988 .
[12] H. Stolarski,et al. Assumed strain formulation for triangular C0 plate elements based on a weak form of the Kirchhoff constraints , 1989 .
[13] Robert L. Taylor,et al. A triangular element based on Reissner‐Mindlin plate theory , 1990 .
[14] E. Hinton,et al. A family of quadrilateral Mindlin plate elements with substitute shear strain fields , 1986 .
[15] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[16] P. Lardeur,et al. A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates , 1989 .
[17] Robert L. Taylor,et al. The patch test for mixed formulations , 1986 .
[18] Jean-Louis Batoz,et al. Evaluation of a new quadrilateral thin plate bending element , 1982 .
[19] O. Zienkiewicz. Numerical solutions of partial differential equations by the finite element method, by Claes Johnson, Cambridge University Press, 1988 , 1988 .
[20] Atef F. Saleeb,et al. An efficient quadrilateral element for plate bending analysis , 1987 .
[21] R. D. Mindlin,et al. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .
[22] M. Crisfield. A four-noded thin-plate bending element using shear constraints—a modified version of lyons' element , 1983 .
[23] Thomas J. R. Hughes,et al. A simple and efficient finite element for plate bending , 1977 .
[24] T. Hughes,et al. Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .
[25] J. Aalto. From Kirchhoff to Mindlin plate elements , 1988 .
[26] Klaus-Jürgen Bathe,et al. A study of three‐node triangular plate bending elements , 1980 .
[27] K. Bathe,et al. Mixed-interpolated elements for Reissner–Mindlin plates , 1989 .
[28] K. Bathe,et al. The MITC7 and MITC9 Plate bending elements , 1989 .