The sensitivity of the heart to static magnetic fields.

[1]  Richard H Clayton,et al.  Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration. , 2004, Progress in biophysics and molecular biology.

[2]  F. Cosío,et al.  Atrial Activation Mapping in Sinus Rhythm in the Clinical Electrophysiology Laboratory: , 2004, Journal of cardiovascular electrophysiology.

[3]  J. R. Rosenberg,et al.  From Maxwell's equations to the cable equation and beyond. , 2004, Progress in biophysics and molecular biology.

[4]  D. Noble,et al.  A model for human ventricular tissue. , 2004, American journal of physiology. Heart and circulatory physiology.

[5]  A. Holden,et al.  Defibrillation threshold computed from normal and supernormal excitable cardiac tissue. , 2004, Mathematical biosciences.

[6]  Gunnar Seemann,et al.  Mathematical Modeling of Cardiac Electro-mechanics: from protein to Organ , 2003, Int. J. Bifurc. Chaos.

[7]  Henggui Zhang,et al.  Modeling Excitation and Propagation of Action Potentials across Inhomogeneous Ventricular Tissue , 2003, Int. J. Bifurc. Chaos.

[8]  Henggui Zhang,et al.  Structure-Function Relationships of the Sinoatrial Node , 2003, Int. J. Bifurc. Chaos.

[9]  Philip Langley,et al.  Comparison of Cardiac Magnetic Field Distributions during Depolarization and Repolarization , 2003, Int. J. Bifurc. Chaos.

[10]  Richard H. Clayton,et al.  Can Endogenous, Noise-Triggered Early after-Depolarizations Initiate reentry in a Modified Luo-rudy Ventricular Virtual Tissue? , 2003, Int. J. Bifurc. Chaos.

[11]  Alayar Kangarlu,et al.  Effect of static magnetic field exposure of up to 8 Tesla on sequential human vital sign measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[12]  M. Boyett,et al.  Sophisticated Architecture is Required for the Sinoatrial Node to Perform Its Normal Pacemaker Function , 2003, Journal of cardiovascular electrophysiology.

[13]  Richard H Clayton,et al.  Computational framework for simulating the mechanisms and ECG of re-entrant ventricular fibrillation , 2002, Physiological measurement.

[14]  A. V. Holden,et al.  Enhanced self-termination of re-entrant arrhythmias as a pharmacological strategy for antiarrhythmic action. , 2002, Chaos.

[15]  N. Sarvazyan,et al.  Initiation and propagation of ectopic waves: insights from an in vitro model of ischemia-reperfusion injury. , 2002, American journal of physiology. Heart and circulatory physiology.

[16]  Felipe Aguel,et al.  Computer simulations of cardiac defibrillation: a look inside the heart , 2002 .

[17]  Jürgen Hennig,et al.  Fast phase contrast cardiac magnetic resonance imaging: Improved assessment and analysis of left ventricular wall motion , 2002, Journal of magnetic resonance imaging : JMRI.

[18]  Henggui Zhang,et al.  Analysis of the Chronotropic Effect of Acetylcholine on Sinoatrial Node Cells , 2002, Journal of cardiovascular electrophysiology.

[19]  F. Fenton,et al.  Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. , 2002, Chaos.

[20]  C. Antzelevitch,et al.  Unique Topographical Distribution of M Cells Underlies Reentrant Mechanism of Torsade de Pointes in the Long-QT Syndrome , 2002, Circulation.

[21]  H. Huikuri,et al.  Sudden death due to cardiac arrhythmias. , 2001, The New England journal of medicine.

[22]  J Jalife,et al.  Standing excitation waves in the heart induced by strong alternating electric fields. , 2001, Physical review letters.

[23]  L. Tung,et al.  Theoretical and Experimental Study of Sawtooth Effect in Isolated Cardiac Cell‐Pairs , 2001, Journal of cardiovascular electrophysiology.

[24]  Henggui Zhang,et al.  Engineering Virtual Cardiac Tissue , 2001, Briefings Bioinform..

[25]  B. Roth,et al.  Optical measurement of cell-to-cell coupling in intact heart using subthreshold electrical stimulation. , 2001, American journal of physiology. Heart and circulatory physiology.

[26]  A Garfinkel,et al.  Patterns of wave break during ventricular fibrillation in isolated swine right ventricle. , 2001, American journal of physiology. Heart and circulatory physiology.

[27]  Denis Noble,et al.  Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  C. Peskin,et al.  Modelling cardiac fluid dynamics and diastolic function , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  I. Legrice,et al.  The architecture of the heart: a data–based model , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  A. A. Young,et al.  Magnetic resonance imaging and ventricle mechanics , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  W. Haberkorn,et al.  Magnetic field mapping of cardiac electrophysiological function , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  M R Boyett,et al.  Gradient Model Versus Mosaic Model of the Sinoatrial Node , 2001, Circulation.

[33]  A. Garfinkel,et al.  Mechanisms of Discordant Alternans and Induction of Reentry in Simulated Cardiac Tissue , 2000, Circulation.

[34]  R L Winslow,et al.  Direct histological validation of diffusion tensor MRI in formaldehyde‐fixed myocardium , 2000, Magnetic resonance in medicine.

[35]  H Zhang,et al.  Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. , 2000, American journal of physiology. Heart and circulatory physiology.

[36]  A. Garfinkel,et al.  Preventing ventricular fibrillation by flattening cardiac restitution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Y Rudy,et al.  Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. , 2000, American journal of physiology. Heart and circulatory physiology.

[38]  Michael Markl,et al.  Cardiac phase contrast gradient echo MRI: measurement of myocardial wall motion in healthy volunteers and patients , 1999, The International Journal of Cardiac Imaging.

[39]  A. Kangarlu,et al.  Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. , 1999, Magnetic resonance imaging.

[40]  N. Trayanova,et al.  Roles of electric field and fiber structure in cardiac electric stimulation. , 1999, Biophysical journal.

[41]  A. Panfilov,et al.  Three-dimensional organization of electrical turbulence in the heart. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Itsuo Kodama,et al.  Heterogeneity of 4-aminopyridine-sensitive current in rabbit sinoatrial node cells. , 1999, American journal of physiology. Heart and circulatory physiology.

[43]  H Honjo,et al.  Regional differences in effects of E-4031 within the sinoatrial node. , 1999, American journal of physiology. Heart and circulatory physiology.

[44]  John Forder,et al.  Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. , 1998, American journal of physiology. Heart and circulatory physiology.

[45]  V. Krinsky,et al.  Models of defibrillation of cardiac tissue. , 1998, Chaos.

[46]  F. Fenton,et al.  Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. , 1998, Chaos.

[47]  R. A. Gray,et al.  Ventricular fibrillation and atrial fibrillation are two different beasts. , 1998, Chaos.

[48]  R E Ideker,et al.  Spatial changes in the transmembrane potential during extracellular electric stimulation. , 1998, Circulation research.

[49]  C. Antzelevitch,et al.  Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. , 1998, Circulation.

[50]  Michael Markl,et al.  Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient‐echo sequence: Methodology and applications to normal volunteers and patients , 1998, Journal of magnetic resonance imaging : JMRI.

[51]  D. Beuckelmann,et al.  Simulation study of cellular electric properties in heart failure. , 1998, Circulation research.

[52]  Arun V. Holden,et al.  Deterministic Brownian motion in the hypermeander of spiral waves , 1998 .

[53]  L. J. Leon,et al.  Spatiotemporal evolution of ventricular fibrillation , 1998, Nature.

[54]  R. Gray,et al.  Spatial and temporal organization during cardiac fibrillation , 1998, Nature.

[55]  Arun V. Holden,et al.  Computational biology of the heart , 1998, The Mathematical Gazette.

[56]  A. McCulloch,et al.  Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. , 1998, Progress in biophysics and molecular biology.

[57]  A. Winfree,et al.  A spatial scale factor for electrophysiological models of myocardium. , 1998, Progress in biophysics and molecular biology.

[58]  Arun V. Holden,et al.  The pacemaking system of the heart: from coupled oscillators to nonlinear waves , 1997 .

[59]  P. Toutouzas,et al.  Changes in phasic coronary blood flow velocity profile and relative coronary flow reserve in patients with hypertrophic obstructive cardiomyopathy. , 1997, Circulation.

[60]  H Honjo,et al.  Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. , 1997, The American journal of physiology.

[61]  B. Roth Electrical conductivity values used with the bidomain model of cardiac tissue , 1997, IEEE Transactions on Biomedical Engineering.

[62]  Arun V. Holden,et al.  A Model for the Action of External Current onto Excitable Tissue , 1997 .

[63]  Arun V. Holden,et al.  SPIRAL WAVE MEANDER AND SYMMETRY OF THE PLANE , 1996 .

[64]  A V Holden,et al.  Re-entrant activity and its control in a model of mammalian ventricular tissue , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  V. Fast,et al.  Spatial changes in transmembrane potential during extracellular electrical shocks in cultured monolayers of neonatal rat ventricular myocytes. , 1996, Circulation research.

[66]  V. Krinsky,et al.  How does an electric field defibrillate cardiac muscle , 1996 .

[67]  R. A. Gray,et al.  Mechanisms of Cardiac Fibrillation , 1995, Science.

[68]  P. Toutouzas,et al.  Changes in phasic coronary blood flow velocity profile in relation to changes in hemodynamic parameters during stress in patients with aortic valve stenosis. , 1995, Circulation.

[69]  R. Ideker,et al.  Optical transmembrane potential measurements during defibrillation-strength shocks in perfused rabbit hearts. , 1995, Circulation research.

[70]  F. Charpentier,et al.  Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. , 1995, Journal of the American College of Cardiology.

[71]  Arun V. Holden,et al.  Nonlinear phenomena in excitable physiological systems , 1995 .

[72]  Arun V. Holden,et al.  Tension of organizing filaments of scroll waves , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[73]  W Krassowska,et al.  Response of a single cell to an external electric field. , 1994, Biophysical journal.

[74]  T. S. Tenforde,et al.  Interaction mechanisms and biological effects of static magnetic fields , 1994 .

[75]  D. Barkley,et al.  Euclidean symmetry and the dynamics of rotating spiral waves. , 1994, Physical review letters.

[76]  M R Boyett,et al.  Correlation between electrical activity and the size of rabbit sino‐atrial node cells. , 1993, The Journal of physiology.

[77]  Denis Noble,et al.  Simulating cardiac sinus and atrial network dynamics on the Connection Machine , 1993 .

[78]  W. O'Dell,et al.  Calculation of three‐dimensional left ventricular strains from biplanar tagged MR images , 1992, Journal of magnetic resonance imaging : JMRI.

[79]  A. Winfree Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media. , 1991, Chaos.

[80]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[81]  M Delmar,et al.  Phase resetting and entrainment of pacemaker activity in single sinus nodal cells. , 1991, Circulation research.

[82]  P. Hunter,et al.  Mathematical model of geometry and fibrous structure of the heart. , 1991, The American journal of physiology.

[83]  J. Jalife,et al.  Cardiac Electrophysiology: From Cell to Bedside , 1990 .

[84]  Tuckerman,et al.  Spiral-wave dynamics in a simple model of excitable media: The transition from simple to compound rotation. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[85]  M R Guevara,et al.  Phase resetting in a model of sinoatrial nodal membrane: ionic and topological aspects. , 1990, The American journal of physiology.

[86]  W. Krassowska,et al.  Potential distribution in three-dimensional periodic myocardium. II. Application to extracellular stimulation , 1990, IEEE Transactions on Biomedical Engineering.

[87]  N. G. Sepulveda,et al.  Current injection into a two-dimensional anisotropic bidomain. , 1989, Biophysical journal.

[88]  Bradley J. Roth,et al.  A Bidomain Model for the Extracellular Potential and Magnetic Field of Cardiac Tissue , 1986, IEEE Transactions on Biomedical Engineering.

[89]  R. C. Barr,et al.  Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillating (stimulating) currents , 1986, Medical and Biological Engineering and Computing.

[90]  Itsuo Kodama,et al.  Regional differences in the electrical activity of the rabbit sinus node , 1985, Pflügers Archiv.

[91]  Arthur C. Guyton,et al.  Handbook of Physiology—The Cardiovascular System , 1985 .

[92]  M. Pressler Cable analysis in quiescent and active sheep Purkinje fibres. , 1984, The Journal of physiology.

[93]  A. Winfree,et al.  Sudden Cardiac Death: A Problem in Topology , 1983 .

[94]  A. Gerdes,et al.  Regional differences in capillary density and myocyte size in the normal human heart , 1982, The Anatomical record.

[95]  A E Becker,et al.  Functional and Morphological Organization of the Rabbit Sinus Node , 1980, Circulation research.

[96]  Smolianinov Vv [Theory of syncytial tissues. I. Electric properties of 2- and 3-dimensional nets]. , 1974 .

[97]  S. Weidmann Electrical constants of trabecular muscle from mammalian heart , 1970, The Journal of physiology.

[98]  S. Weidmann,et al.  The electrical constants of Purkinje fibres , 1952, The Journal of physiology.

[99]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[100]  A. Hodgkin,et al.  The electrical constants of a crustacean nerve fibre , 1946, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[101]  William Albert Hugh Rushton,et al.  Initiation of the Propagated Disturbance , 1937 .

[102]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .

[103]  Panos Vardas,et al.  Update of the guidelines on sudden cardiac death of the European Society of Cardiology. , 2003, European heart journal.

[104]  A. Holden,et al.  Bidomain virtual ventricular tissue: role of the external bath in defibrillation , 2002 .

[105]  Arun V. Holden,et al.  On Two Mechanisms of the Domain Structure of Ventricular Fibrillation , 2001, Int. J. Bifurc. Chaos.

[106]  A Garfinkel,et al.  Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. , 1999, The American journal of physiology.

[107]  Arun V. Holden,et al.  THREE-DIMENSIONAL ASPECTS OF RE-ENTRY IN EXPERIMENTAL AND NUMERICAL MODELS OF VENTRICULAR FIBRILLATION , 1999 .

[108]  Baofeng Yang,et al.  Transmembrane I Ca contributes to rate-dependent changes of action potentials in human ventricular myocytes. , 1999, American journal of physiology. Heart and circulatory physiology.

[109]  T. Tenforde,et al.  Theoretical analysis of magnetic field interactions with aortic blood flow. , 1996, Bioelectromagnetics.

[110]  E. McVeigh MRI of myocardial function: motion tracking techniques. , 1996, Magnetic resonance imaging.

[111]  C. Henriquez Simulating the electrical behavior of cardiac tissue using the bidomain model. , 1993, Critical reviews in biomedical engineering.

[112]  T F Budinger,et al.  Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis. , 1983, Bioelectromagnetics.

[113]  Joan Ockman,et al.  The Architecture of the City , 1982 .

[114]  T. Tenforde,et al.  Alterations in the rat electrocardiogram induced by stationary magnetic fields. , 1981, Bioelectromagnetics.

[115]  Dd. Streeter,et al.  Gross morphology and fiber geometry of the heart , 1979 .

[116]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[117]  C. C. Moore,et al.  Three-dimensional Myocardial Deformations: Calculation with Displacement Field Fitting to Tagged Mr Images' , 2022 .