Artificial immune systems—today and tomorrow

In this position paper, we argue that the field of artificial immune systems (AIS) has reached an impasse. For many years, immune inspired algorithms, whilst having some degree of success, have been limited by the lack of theoretical advances, the adoption of a naive immune inspired approach and the limited application of AIS to challenging problems. We review the current state of the AIS approach, and suggest a number of challenges to the AIS community that can be undertaken to help move the area forward.

[1]  G. Grimmett,et al.  Probability and random processes , 2002 .

[2]  Jerne Nk Towards a network theory of the immune system. , 1974 .

[3]  Jonathan Timmis,et al.  A resource limited artificial immune system for data analysis , 2001, Knowl. Based Syst..

[4]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[5]  C. Berek,et al.  The maturation of the immune response. , 1993, Immunology today.

[6]  Liu Bingzheng,et al.  An improved mathematical model of hormone secretion in the hypothalamo-pituitary-gonadal axis in man. , 1991 .

[7]  H Atlan,et al.  Can AIDS be prevented by T-cell vaccination? , 1993, Immunology today.

[8]  H. Besedovsky,et al.  Immune-neuro-endocrine interactions: facts and hypotheses. , 1996, Endocrine reviews.

[9]  Julie Greensmith,et al.  Two Ways to Grow Tissue for Artificial Immune Systems , 2005, ICARIS.

[10]  Jonathan Timmis,et al.  Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier , 2004, ICARIS.

[11]  Jonathan Timmis,et al.  Application Areas of AIS: The Past, The Present and The Future , 2005, ICARIS.

[12]  Andrew Hone,et al.  Conceptual Frameworks for Artificial Immune Systems , 2005, Int. J. Unconv. Comput..

[13]  Peter Ross,et al.  Studies on the Implications of Shape-Space Models for Idiotypic Networks , 2004, ICARIS.

[14]  Jonathan Timmis,et al.  A Markov Chain Model of the B-Cell Algorithm , 2005, ICARIS.

[15]  Simon M. Garrett,et al.  How Do We Evaluate Artificial Immune Systems? , 2005, Evolutionary Computation.

[16]  H. Besedovsky,et al.  Immune-neuro-endocrine interactions: facts and hypotheses. , 1996, Endocrine reviews.

[17]  Julie Greensmith,et al.  Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomoly Detection , 2005, ICARIS.

[18]  L. Segel,et al.  Design Principles for the Immune System and Other Distributed Autonomous Systems , 2001 .

[19]  Jonathan Timmis,et al.  Immune Inspired Somatic Contiguous Hypermutation for Function Optimisation , 2003, GECCO.

[20]  Stephanie Forrest,et al.  Computer immunology , 1997, CACM.

[21]  J Timmis,et al.  An artificial immune system for data analysis. , 2000, Bio Systems.

[22]  F. Azuaje Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[23]  Simon M. Garrett Parameter-free, adaptive clonal selection , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[24]  Claudia Eckert,et al.  A Comparative Study of Real-Valued Negative Selection to Statistical Anomaly Detection Techniques , 2005, ICARIS.

[25]  Irun R. Cohen,et al.  On Tending Adam's Garden , 2000 .

[26]  Hans B. Sieburg,et al.  The Cellular Device Machine Development System for Modeling Biology on the Computer , 1991, Complex Syst..

[27]  Alan S. Perelson,et al.  Self-nonself discrimination in a computer , 1994, Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy.

[28]  C. Janeway,et al.  Innate immune recognition. , 2002, Annual review of immunology.

[29]  Joachim Niehren,et al.  Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch , 2006, Trans. Comp. Sys. Biology.

[30]  M Cohn,et al.  The 'complete' idiotype network is an absurd immune system. , 1986, Immunology today.

[31]  Tomasz Zastawniak,et al.  Basic stochastic processes , 1999 .

[32]  R. de Lemos,et al.  Towards immune inspired fault tolerance in embedded systems , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[33]  Susan Stepney,et al.  Journeys in Non-Classical Computation , 2008 .

[34]  Yoshiteru Ishida,et al.  Active Diagnosis by Self-Organization: An Approach by The Immune Network Metaphor , 1997, IJCAI.

[35]  H. Besedovsky,et al.  Thymus involvement in female sexual maturation , 1974, Nature.

[36]  I. Cohen Tending Adam's Garden: Evolving the Cognitive Immune Self , 2004 .

[37]  Alex Alves Freitas,et al.  AISEC: an artificial immune system for e-mail classification , 2003, IEEE Congress on Evolutionary Computation.

[38]  A. Perelson Immune Network Theory , 1989, Immunological reviews.

[39]  Jon Timmis,et al.  Once More Unto the Breach: Towards Artificial Homeostasis? , 2005 .

[40]  Emma Hart,et al.  Not All Balls Are Round: An Investigation of Alternative Recognition-Region Shapes , 2005, ICARIS.

[41]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[42]  Claudia Eckert,et al.  Is negative selection appropriate for anomaly detection? , 2005, GECCO '05.

[43]  Alan S. Perelson,et al.  The Evolution of Emergent Organization in Immune System Gene Libraries , 1995, ICGA.

[44]  P. Bentley,et al.  A Model of Gene Library Evolution in the Dynamic Cl onal Selection Algorithm , 2002 .

[45]  W R Smith,et al.  Qualitative mathematical models of endocrine systems. , 1983, The American journal of physiology.

[46]  Brian D. Ripley,et al.  Basic Stochastic Processes , 2005 .

[47]  Hugues Bersini,et al.  The Immune Learning Mechanisms: Recruitment Reinforcement and their applications , 1993 .

[48]  C. Janeway Immunobiology: The Immune System in Health and Disease , 1996 .

[49]  ANDREW WATKINS,et al.  PARALLELIZING AN IMMUNE-INSPIRED ALGORITHM FOR EFFICIENT PATTERN RECOGNITION , 2003 .

[50]  Susan Stepney,et al.  A Generic Framework for Population-Based Algorithms, Implemented on Multiple FPGAs , 2005, ICARIS.

[51]  Luca Cardelli,et al.  A Correct Abstract Machine for the Stochastic Pi-calculus , 2004 .

[52]  Carlos A. Coello Coello,et al.  Convergence Analysis of a Multiobjective Artificial Immune System Algorithm , 2004, ICARIS.

[53]  Claudia Eckert,et al.  An Investigation of R-Chunk Detector Generation on Higher Alphabets , 2004, GECCO.

[54]  John E. Hunt,et al.  Learning using an artificial immune system , 1996 .

[55]  Mark Neal,et al.  An artificial immune system for continuous analysis of time-varying data , 2002 .

[56]  Vincenzo Cutello,et al.  Exploring the Capability of Immune Algorithms: A Characterization of Hypermutation Operators , 2004, ICARIS.

[57]  Leandro Nunes de Castro,et al.  Hierarchy and Convergance of Immune Networks: Basic Ideas and Premilinary Results , 2002 .

[58]  Simon M. Garrett A Paratope Is Not an Epitope: Implications for Immune Network Models and Clonal Selection , 2003, ICARIS.

[59]  P. Helman,et al.  A formal framework for positive and negative detection schemes , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[60]  H. Abbass,et al.  aiNet : An Artificial Immune Network for Data Analysis , 2022 .

[61]  Jon Timmis,et al.  Jisys: The Envelopment of an Artificial Immune System for Real World Applications , 1999 .

[62]  Peter J. Bentley,et al.  Immune Memory in the Dynamic Clonal Selection Algorithm , 2002 .

[63]  Alex Alves Freitas,et al.  Revisiting the Foundations of Artificial Immune Systems: A Problem-Oriented Perspective , 2003, ICARIS.

[64]  F. Burnet The clonal selection theory of acquired immunity , 1959 .

[65]  John E. Hunt,et al.  Recognising Promoter Sequences Using An Artificial Immune System , 1995, ISMB.

[66]  Hugues Bersini,et al.  Immune Network and Adaptive Control , 1991 .