Small ubiquitin-related modifier-fused bacteriophage tail fiber protein with favorable aqueous solubility for lateral flow assay of Pseudomonas aeruginosa.

[1]  Feng Xue,et al.  A Universal Bacterial Catcher Au-PMBA-Nanocrab-Based Lateral Flow Immunoassay for Rapid Pathogens Detection. , 2022, Analytical chemistry.

[2]  M. Salavati‐Niasari,et al.  Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities , 2022, International Journal of Hydrogen Energy.

[3]  M. Salavati‐Niasari,et al.  Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties , 2021 .

[4]  Soo Hyeon Kim,et al.  Surface-Enhanced Raman Scattering-Based Dual-Flow Lateral Flow Assay Sensor for the Ultrasensitive Detection of the Thyroid-Stimulating Hormone. , 2021, Analytical chemistry.

[5]  Liang Huang,et al.  Ratiometric Fluorescent Lateral Flow Immunoassay for Point-of-Care Testing of Acute Myocardial Infarction. , 2021, Angewandte Chemie.

[6]  H. Ouyang,et al.  Novel cobalt-based metal-organic frameworks with superior catalytic performance on N-(4-aminobutyl)-N-ethylisoluminol chemiluminescent reaction. , 2021, Analytica chimica acta.

[7]  M. Salavati‐Niasari,et al.  Dy 2 BaCuO 5 /Ba 4 DyCu 3 O 9.09 S‐scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities , 2021 .

[8]  P. Behzadi,et al.  It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa , 2021, Antibiotics.

[9]  R. Hołyst,et al.  Recent Progress in the Detection of Bacteria Using Bacteriophages: A Review , 2020, Viruses.

[10]  Shenqi Wang,et al.  High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. , 2020, Biosensors & bioelectronics.

[11]  Chulmin Joo,et al.  Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. , 2020, Biosensors & bioelectronics.

[12]  M. Salavati‐Niasari,et al.  Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. , 2019, Ultrasonics sonochemistry.

[13]  A. Plückthun,et al.  Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins. , 2019, Cell reports.

[14]  M. Salavati‐Niasari,et al.  Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material , 2019, International Journal of Hydrogen Energy.

[15]  Jumpei Uchiyama,et al.  Dark-Field Microscopic Detection of Bacteria Using Bacteriophage-Immobilized SiO2@AuNP Core-Shell Nanoparticles. , 2019, Analytical chemistry.

[16]  Yu-Chie Chen,et al.  Tail Fiber Protein-immobilized Magnetic Nanoparticle-based Affinity Approaches for Detection of Acinetobacter baumannii. , 2019, Analytical chemistry.

[17]  Franklin L. Nobrega,et al.  Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential. , 2018, Trends in biotechnology.

[18]  G. Ertürk,et al.  Bacteriophages as biorecognition elements in capacitive biosensors : Phage and host bacteria detection , 2018 .

[19]  M. Salavati‐Niasari,et al.  A new nanocomposite superionic system (CdHgI4/HgI2): Synthesis, characterization and experimental investigation , 2017 .

[20]  M. Salavati‐Niasari,et al.  Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites , 2016, Journal of Materials Science: Materials in Electronics.

[21]  C. Szymanski,et al.  Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages , 2016, Viruses.

[22]  Muhammad Sajid,et al.  Designs, formats and applications of lateral flow assay: A literature review , 2015 .

[23]  Xuewen Lu,et al.  Lateral flow biosensor for DNA extraction-free detection of Salmonella based on aptamer mediated strand displacement amplification. , 2014, Biosensors & bioelectronics.

[24]  A. Herr,et al.  Protein immobilization techniques for microfluidic assays. , 2013, Biomicrofluidics.

[25]  Aart van Amerongen,et al.  Distribution of biomolecules in porous nitrocellulose membrane pads using confocal laser scanning microscopy and high-speed cameras. , 2013, Analytical chemistry.

[26]  D. E. Aston,et al.  DNA detection on lateral flow test strips: enhanced signal sensitivity using LNA-conjugated gold nanoparticles. , 2012, Chemical communications.

[27]  M. Vaneechoutte,et al.  PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients. A literature review. , 2011, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[28]  C. Pace,et al.  Measuring and increasing protein solubility. , 2008, Journal of pharmaceutical sciences.

[29]  J. G. Marblestone,et al.  Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO , 2006, Protein science : a publication of the Protein Society.

[30]  Lu-Yun Lian,et al.  A simple method for improving protein solubility and long-term stability. , 2004, Journal of the American Chemical Society.

[31]  B. Glick,et al.  Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. , 2019, Biotechnology advances.