Constructions of resilient rotation symmetric boolean functions on given number of variables

In this study, the properties of the support tables of rotation symmetric Boolean functions (RSBFs for simplicity) are studied, and two sufficient and necessary conditions for RSBFs being 1- and 2-resilient are obtained, respectively. Based on the relations between resilient functions and orthogonal arrays, with the help of the properties about the support tables of RSBFs, it is shown that the constructions of 1-resilient RSBFs on given number of variables are equivalent to solving an equation system, and the number of functions is equal to the number of solutions of the equation system. Moreover, similar results are also obtained for 2-resilient RSBFs. Lastly, a simple example is given to demonstrate our method. The results indicate that the constructions of n-variable 1-resilient RSBFs are equivalent to studying the cyclotomic cosets Cs modulo 2 n − 1 with respect to 2.

[1]  Selçuk Kavut,et al.  Enumeration of 9-Variable Rotation Symmetric Boolean Functions Having Nonlinearity > 240 , 2006, INDOCRYPT.

[2]  Pantelimon Stanica,et al.  Rotation Symmetric Boolean Functions -; Count and Cryptographic Properties , 2003, Electron. Notes Discret. Math..

[3]  Dean G. Hoffman,et al.  A Note on a Conjecture Concerning Symmetric Resilient Functions , 1993, Inf. Process. Lett..

[4]  Josef Pieprzyk,et al.  Rotation-Symmetric Functions and Fast Hashing , 1998, J. Univers. Comput. Sci..

[5]  Subhamoy Maitra,et al.  Construction of Rotation Symmetric Boolean Functions on Odd Number of Variables with Maximum Algebraic Immunity , 2007, AAECC.

[6]  Thomas W. CusickPantelimon Stùanicùa Fast Evaluation, Weights and Nonlinearity of Rotation-Symmetric Functions , 2000 .

[7]  Claude Carlet,et al.  Algebraic immunity for cryptographically significant Boolean functions: analysis and construction , 2006, IEEE Transactions on Information Theory.

[8]  Chao Li,et al.  Balanced rotation symmetric boolean functions with maximum algebraic immunity , 2011, IET Inf. Secur..

[9]  Haibin Kan,et al.  Constructing Correlation Immune Symmetric Boolean Functions , 2011, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  Ed Dawson,et al.  Correlation immunity and resiliency of symmetric Boolean functions , 2004, Theor. Comput. Sci..

[11]  Pantelimon Stanica,et al.  Fast evaluation, weights and nonlinearity of rotation-symmetric functions , 2002, Discret. Math..

[12]  WeiGuo Zhang,et al.  Constructions of Almost Optimal Resilient Boolean Functions on Large Even Number of Variables , 2009, IEEE Transactions on Information Theory.

[13]  Yixian Yang,et al.  Further enumerating boolean functions of cryptographic significance , 2004, Journal of Cryptology.

[14]  Thomas Siegenthaler,et al.  Correlation-immunity of nonlinear combining functions for cryptographic applications , 1984, IEEE Trans. Inf. Theory.

[15]  John A. Clark,et al.  Results on Rotation Symmetric Bent and Correlation Immune Boolean Functions , 2004, FSE.

[16]  Palash Sarkar,et al.  Balancedness and Correlation Immunity of Symmetric Boolean Functions , 2003, Electron. Notes Discret. Math..

[17]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[18]  D. Stinson,et al.  Resilient functions and large sets of orthogonal arrays , 2022 .

[19]  Oded Goldreich,et al.  The bit extraction problem or t-resilient functions , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[20]  Chao Li,et al.  On the number of rotation symmetric Boolean functions , 2010, Science China Information Sciences.

[21]  Alexander Maximov,et al.  Classes of Plateaued Rotation Symmetric Boolean Functions under Transformation of Walsh Spectra , 2004, IACR Cryptol. ePrint Arch..

[22]  Anne Canteaut,et al.  Symmetric Boolean functions , 2005, IEEE Transactions on Information Theory.

[23]  C. R. Rao,et al.  Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .

[24]  Pantelimon Stanica,et al.  Cryptographic Boolean Functions and Applications , 2009 .

[25]  Eric Filiol,et al.  Highly Nonlinear Balanced Boolean Functions with a Good Correlation-Immunity , 1998, EUROCRYPT.

[26]  Subhamoy Maitra,et al.  Further constructions of resilient Boolean functions with very high nonlinearity , 2002, IEEE Trans. Inf. Theory.

[27]  Caroline Fontaine,et al.  On Some Cosets of the First-Order Reed-Muller Code with High Minimum Weight , 1999, IEEE Trans. Inf. Theory.

[28]  Selçuk Kavut,et al.  Search for Boolean Functions With Excellent Profiles in the Rotation Symmetric Class , 2007, IEEE Transactions on Information Theory.

[29]  Josef Pieprzyk,et al.  Fast Hashing and Rotation-Symmetric Functions , 1999 .

[30]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[31]  Zhang Jian-zhou Enumeration of Binary Orthogonal Arrays of Strength 1 , 2006 .

[32]  Claude Carlet,et al.  On Correlation-Immune Functions , 1991, CRYPTO.