Time-variant reliability-based structural optimization using sorm

Structural optimization under time-invariante reliability constraints is sufficiently well known. The same problem under time-dependent loads and resistances has not yet found satisfying solutions. Recently, a new attempt has been made where structural reliability is determined by the outcrossing approach in the context of first-order reliability methodology (FORM). In the paper an algorithm is designed with which outcrossing rates determined by asymptotic second-order reliability methods (SORM) can be used as constraints in structural optimization. The method is developed for two different types of stationary load models, rectangular wave renewal processes and Gaussian processes, respectively. An example application demonstrates the new methodology

[1]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[2]  Rüdiger Rackwitz,et al.  Two basic problems in reliability-based structural optimization , 1997, Math. Methods Oper. Res..

[3]  Palle Thoft-Christensen,et al.  Interactive Structural Optimization with Quasi-Newton Algorithms , 1995 .

[4]  K. Breitung Asymptotic crossing rates for stationary Gaussian vector processes , 1988 .

[5]  Mircea Grigoriu,et al.  Vector-Process Models for System Reliability , 1977 .

[6]  Y. Belyaev On the Number of Exits Across the Boundary of a Region by a Vector Stochastic Process , 1968 .

[7]  K. Breitung Asymptotic approximations for multinormal integrals , 1984 .

[8]  Albert Duda,et al.  Wahrscheinlichkeitsmethoden zur Berechnung von Konstruktionen , 1981 .

[9]  Michael Havbro Faber,et al.  The Ergodicity Assumption for Sea States in the Reliability Estimation of Offshore Structures , 1991 .

[10]  E. Rosenblueth,et al.  Reliability Optimization in Isostatic Structures , 1971 .

[11]  Palle Thoft-Christensen,et al.  Reliability and Optimization of Structural Systems , 2019 .

[12]  R. Rackwitz,et al.  Approximations of first-passage times for differentiable processes based on higher-order threshold crossings , 1995 .

[13]  R. Rackwitz,et al.  Non-Normal Dependent Vectors in Structural Safety , 1981 .

[14]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[15]  Karl Breitung,et al.  Nonlinear Combination of Load Processes , 1982 .

[16]  S. Rice Mathematical analysis of random noise , 1944 .

[17]  R. Rackwitz,et al.  Structural reliability under combined random load sequences , 1978 .

[18]  A. M. Hasofer Design for infrequent overloads , 1973 .

[19]  Gerhart I. Schuëller,et al.  Reliability-Based Optimization of structural systems , 1997, Math. Methods Oper. Res..

[20]  Emilio Rosenblueth,et al.  Optimum Design for Infrequent Disturbances , 1976 .

[21]  J. Murzewski,et al.  Bolotin, V. V., Wahrscheinlichkeitsmethoden zur Berechnung von Konstruktionen. Berlin, VEB Verlag für Bauwesen 1981. 567 S., M 74,‐. BN 5615607 , 1983 .