First principles study of Rh-doped SnO2 for highly sensitive and selective hydrogen detection

[1]  Y. Liu,et al.  P2221-C8: A novel carbon allotrope denser than diamond , 2022, Scripta Materialia.

[2]  N. Jaggi,et al.  Theoretical investigations of hydrogen gas sensing and storage capacity of graphene-based materials: A review , 2021, Sensors and Actuators A: Physical.

[3]  Jing Wang,et al.  The role of oxygen vacancies on SnO2 in improving formaldehyde competitive adsorption: A DFT study with an experimental verification , 2021, Applied Surface Science.

[4]  G. A. Ahmed,et al.  Structural, optical and magnetic study of Eu2+ doped SnO2 nanosystems: an experimental and DFT based investigation , 2021, Journal of Materials Science.

[5]  M. Ouyang,et al.  Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process , 2021 .

[6]  B. Choudhary,et al.  Enhanced sensitivity of graphene nanoribbon gas sensor for detection of oxides of nitrogen using boron and phosphorus co-doped system: A first principles study , 2021 .

[7]  G. Qiao,et al.  Gas Sensing Properties of Defective Tellurene on the Nitrogen Oxides: A First-principles Study , 2021 .

[8]  Yang Fan,et al.  Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review , 2021 .

[9]  M. Osada,et al.  Hydrogen sensing characteristics of Pd-decorated ultrathin ZnO nanosheets , 2020 .

[10]  G. Ding,et al.  Ultra-high sensitive micro-chemo-mechanical hydrogen sensor integrated by palladium-based driver and high-performance piezoresistor , 2020 .

[11]  Ho Won Jang,et al.  Atomic Layer Deposition Seeded Growth of Rutile SnO2 Nanowires on Versatile Conducting Substrates. , 2020, ACS applied materials & interfaces.

[12]  I. Elahi,et al.  Development of ferromagnetism and formation energetics in 3d TM-doped SnO2: GGA and GGA + U calculations , 2020 .

[13]  H. Hassan,et al.  Hydrogen gas sensing based on nanocrystalline SnO2 thin films operating at low temperatures , 2020 .

[14]  Y. Nishihata,et al.  Performance tests of catalysts for the safe conversion of hydrogen inside the nuclear waste containers in Fukushima Daiichi , 2020 .

[15]  Jiujun Zhang,et al.  3D branched rutile TiO2 @ rutile SnO2 nanorods array heteroarchitectures/carbon cloth with an adjustable band gap to enhance lithium storage reaction kinetics for flexible lithium-ion batteries , 2020 .

[16]  D. Xiong,et al.  Mo-doped SnO2 nanoparticles embedded in ultrathin graphite nanosheets as a high reversible capacity, superior rate and long cycle life anode material for lithium-ion batteries. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[17]  Lingna Xu,et al.  Adsorption of SO2 molecule on Ni-doped and Pd-doped graphene based on first-principle study , 2020 .

[18]  M. Debliquy,et al.  Metal oxide semiconductors with highly concentrated oxygen vacancies for gas sensing materials: A review , 2020 .

[19]  C. Langer,et al.  MEMS-based thermal conductivity sensor for hydrogen gas detection in automotive applications , 2020 .

[20]  Xin Gao,et al.  Gas sensing mechanism of dissolved gases in transformer oil on Ag–MoS2 monolayer: A DFT study , 2020 .

[21]  H. Giessen,et al.  Low-cost hydrogen sensor in the ppm range with purely optical read-out. , 2020, ACS sensors.

[22]  G. Bai,et al.  Sensing mechanism of Sb, S doped SnO2 (1 1 0) surface for CO , 2020 .

[23]  Miaoran Zhang,et al.  Red‐Carbon‐Quantum‐Dot‐Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells , 2019, Advanced materials.

[24]  Wei Xue,et al.  Temperature-dependent gas sensing properties of porous silicon oxycarbide: Insight from first principles , 2019, Applied Surface Science.

[25]  A. Benyoussef,et al.  Phosphorene: A promising candidate for H2 storage at room temperature , 2019, International Journal of Hydrogen Energy.

[26]  W. Xue,et al.  Silicon Oxycarbide-Derived Carbon as Potential NO2 Gas Sensor: A First Principles’ Study , 2018, IEEE Electron Device Letters.

[27]  Zongyan Zhao,et al.  Interfacial micro-structure and properties of TiO 2 /SnO 2 heterostructures with rutile phase: A DFT calculation investigation , 2018, Applied Surface Science.

[28]  Huimin Yang,et al.  The adsorptions of fixed groups −CN, −NH2, −SH, −OH and −COOH of dye molecules on stoichiometric, oxygen vacancy and Pt-doped SnO2 (110) surfaces , 2018 .

[29]  Malcolm J. Rutter,et al.  C2x: A tool for visualisation and input preparation for Castep and other electronic structure codes , 2017, Comput. Phys. Commun..

[30]  N. Zhang,et al.  Effects of Sm doping content on the ionic conduction of CeO2 in SOFCs from first principles , 2017 .

[31]  Adisorn Tuantranont,et al.  Ultra-sensitive and highly selective H2 sensors based on FSP-made Rh-substituted SnO2 sensing films , 2017 .

[32]  W. Xue,et al.  Atomic investigation on reversible lithium storage in amorphous silicon oxycarbide as a high power anode material , 2016 .

[33]  Yu Wang,et al.  Highly Responsive Room-Temperature Hydrogen Sensing of α-MoO₃ Nanoribbon Membranes. , 2015, ACS applied materials & interfaces.

[34]  W. Xue,et al.  Effect of carbon content on the structure and electronic properties of silicon oxycarbide anodes for lithium-ion batteries: a first-principles study , 2015 .

[35]  B. Mwakikunga,et al.  VO2 nanostructures based chemiresistors for low power energy consumption hydrogen sensing , 2014 .

[36]  M. Rérat,et al.  Structural and electronic properties of Sb-doped SnO2 (1 1 0) surface: A first principles study , 2013 .

[37]  Stefano de Gironcoli,et al.  Hubbard‐corrected DFT energy functionals: The LDA+U description of correlated systems , 2013, 1309.3355.

[38]  A. Yu,et al.  Adsorption of the OH Group on SnO2(110) Oxygen Bridges: A Molecular Dynamics and Density Functional Theory Study , 2013 .

[39]  D. Suetin Electronic, magnetic properties and chemical bonding in layered oxychalcogenides Ca{sub 4}Fe{sub 2}Cu{sub 2}S{sub 2}O{sub 6} and Ca{sub 4}Fe{sub 2}Cu{sub 2}Se{sub 2}O{sub 6} from first principles calculations , 2012 .

[40]  N. Rösch,et al.  Size dependence of the adsorption energy of CO on metal nanoparticles: a DFT search for the minimum value. , 2012, Nano letters.

[41]  Annabella Selloni,et al.  Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations. , 2008, The Journal of chemical physics.

[42]  Guowei Yang,et al.  Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen , 2008 .

[43]  Zhihao Yuan,et al.  Nanopillar ZnO gas sensor for hydrogen and ethanol , 2007 .

[44]  T. Pagnier,et al.  Ab initio DFT computation of SnO2 and WO3 slabs and gas–surface interactions , 2007 .

[45]  Suresh Narayanan,et al.  Breakdown of the continuum stokes-einstein relation for nanoparticle diffusion. , 2007, Nano letters.

[46]  N. Hoa,et al.  Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gas sensing performance , 2021 .