Generalised Hermite spectral methods for PDEs involving integral fractional Laplacian and Schr\"{o}dinger operators.

In this paper, we introduce two new families of generalised Hermite polynomials/functions (GHPs/GHFs) in arbitrary dimensions, and develop efficient and accurate generalised Hermite spectral algorithms for PDEs with integral fractional Laplacian (IFL) and/or Schr\"{o}dinger operators in $\mathbb R^d.$ As a generalisation of the G. Szeg\"{o}'s family in 1D (1939), the first family of GHPs (resp. GHFs) are orthogonal with respect to $|\bx|^{2\mu} \e^{-|\bx|^2}$ (resp. $|\bx |^{2\mu}$) in $\mathbb R^d$. We further define adjoint generalised Hermite functions (A-GHFs) which have an interwoven connection with the corresponding GHFs through the Fourier transform, and which are orthogonal with respect to the inner product $[u,v]_{H^s(\mathbb R^d)}=((-\Delta)^{s/ 2}u, (-\Delta)^{s/2} v )_{\mathbb R^d}$ associated with the IFL of order $s>0$. Thus, the spectral-Galerkin method using A-GHFs as basis functions leads to a diagonal stiffness matrix for the IFL (which is known to be notoriously difficult and expensive to discretise). The new basis also finds efficient and accurate in solving PDEs with the fractional Schr\"{o}dinger operator: $(-\Delta)^s +|\bs x|^{2\mu}$ with $s\in (0,1]$ and $\mu>-1/2.$ Following the same spirit, we construct the second family of GHFs, dubbed as M\"untz-type generalised Hermite functions (M-GHFs), which are orthogonal with respect to an inner product associated with the underlying Schr\"{o}dinger operator, and are tailored to the singularity of the solution at the origin. We demonstrate that the M\"untz-type GHF spectral method leads to sparse matrices and spectrally accurate to some Schr\"{o}dinger eigenvalue problems.

[1]  Jie Shen,et al.  Fast Fourier-like Mapped Chebyshev Spectral-Galerkin Methods for PDEs with Integral Fractional Laplacian in Unbounded Domains , 2019, SIAM J. Numer. Anal..

[2]  M. Rosenblum,et al.  Generalized Hermite Polynomials and the Bose-Like Oscillator Calculus , 1993, math/9307224.

[3]  Jie Shen,et al.  Hermite Spectral Methods for Fractional PDEs in Unbounded Domains , 2017, SIAM J. Sci. Comput..

[4]  Jie Shen,et al.  Müntz-Galerkin Methods and Applications to Mixed Dirichlet-Neumann Boundary Value Problems , 2016, SIAM J. Sci. Comput..

[5]  T. S. Shao,et al.  Tables of Zeros and Gaussian Weights of Certain Associated Laguerre Polynomials and the Related Generalized Hermite Polynomials , 1964 .

[6]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[7]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[8]  Xiaoyun Jiang,et al.  A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator , 2020, J. Comput. Phys..

[9]  T. S. Chihara GENERALIZED HERMITE POLYNOMIALS , 1955 .

[10]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[11]  Zhong-Qing Wang,et al.  A fully diagonalized spectral method using generalized Laguerre functions on the half line , 2017, Adv. Comput. Math..

[12]  Jie Shen,et al.  A Generalized-Laguerre--Fourier--Hermite Pseudospectral Method for Computing the Dynamics of Rotating Bose--Einstein Condensates , 2009, SIAM J. Sci. Comput..

[13]  Linus Pauling,et al.  Introduction to Quantum Mechanics with Applications to Chemistry , 1935 .

[14]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[15]  Tao Tang,et al.  The Hermite Spectral Method for Gaussian-Type Functions , 1993, SIAM J. Sci. Comput..

[16]  Ch. H. Müntz Über den Approximationssatz von Weierstraß , 1914 .

[17]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[18]  Zhimin Zhang,et al.  Ball prolate spheroidal wave functions in arbitrary dimensions , 2018, Applied and Computational Harmonic Analysis.

[19]  Yuwei Fan,et al.  Burnett spectral method for the spatially homogeneous Boltzmann equation , 2018, Computers & Fluids.

[20]  Zhenning Cai,et al.  Burnett Spectral Method for High-Speed Rarefied Gas Flows , 2020, SIAM J. Sci. Comput..

[21]  Gerald Teschl,et al.  Mathematical Methods in Quantum Mechanics , 2009 .

[22]  Changtao Sheng,et al.  Fundamental gaps of the fractional Schrödinger operator , 2018, Communications in Mathematical Sciences.

[23]  W. Koepf,et al.  Two classes of special functions using Fourier transforms of generalized ultraspherical and generalized Hermite polynomials , 2012 .

[24]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[25]  T. Tang,et al.  Hermite spectral collocation methods for fractional PDEs in unbounded domains , 2018, 1801.09073.

[26]  O. Szász Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen , 1916 .

[27]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[28]  Chuanju Xu,et al.  A fractional spectral method with applications to some singular problems , 2016, Adv. Comput. Math..

[29]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[30]  D. Burnett The Distribution of Molecular Velocities and the Mean Motion in a Non-Uniform Gas , 1936 .

[31]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[32]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[33]  M. Rösler Generalized Hermite Polynomials and the Heat Equation for Dunkl Operators , 1998 .

[34]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .