A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinearequations

In this paper, we propose a descent derivative-free method for solving symmetric nonlinear equations. The method is an extension of the modified Fletcher-Reeves (MFR) method proposed by Zhang, Zhou and Li [25] to symmetric nonlinear equations. It can be applied to solve large-scale symmetric nonlinear equations due to lower storage requirement. An attractive property of the method is that the directions generated by the method are descent for the residual function. By the use of some backtracking line search technique, the generated sequence of function values is decreasing. Under appropriate conditions, we show that the proposed method is globally convergent. The preliminary numerical results show that the method is practically effective.

[1]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Gauss-Newton-Based BFGS Method for Symmetric Nonlinear Equations , 1999, SIAM J. Numer. Anal..

[2]  Marcos Raydan,et al.  Nonmonotone Spectral Methods for Large-Scale Nonlinear Systems , 2003, Optim. Methods Softw..

[3]  M. J. D. Powell,et al.  Restart procedures for the conjugate gradient method , 1977, Math. Program..

[4]  Wanyou Cheng,et al.  A derivative-free nonmonotone line search and its application to the spectral residual method , 2009 .

[5]  Li Zhang,et al.  Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search , 2006, Numerische Mathematik.

[6]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[7]  Anderas Griewank The “global” convergence of Broyden-like methods with suitable line search , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[8]  Wanyou Cheng,et al.  Recent progress in the global convergence of quasi-Newton methods for nonlinear equations , 2007 .

[9]  M. J. D. Powell,et al.  Some convergence properties of the conjugate gradient method , 1976, Math. Program..

[10]  M. Al-Baali Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .

[11]  Liu Guanghui,et al.  Global convergence of the fletcher-reeves algorithm with inexact linesearch , 1995 .

[12]  Weijun,et al.  LIMITED MEMORY BFGS METHOD FOR NONLINEAR MONOTONE EQUATIONS , 2007 .

[13]  Liuguanghui,et al.  GLOBAL CONVERGENCE OF THE FLETCHER-REEVES ALGORITHM WITH INEXACT LINESEARCH , 1995 .

[14]  Yin Hongxia CONVERGENCE PROPERTIES OF CONJUGATE GRADIENT METHODS WITH STRONG WOLFE LINESEARCH , 1998 .

[15]  M. Fukushima,et al.  A derivative-free line search and global convergence of Broyden-like method for nonlinear equations , 2000 .

[16]  Qingna Li,et al.  A class of derivative-free methods for large-scale nonlinear monotone equations , 2011 .

[17]  Dong-Hui Li,et al.  A globally convergent derivative-free method for solving large-scale nonlinear monotone equations , 2010, J. Comput. Appl. Math..

[18]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[19]  Dong-Hui Li,et al.  A globally convergent BFGS method for nonlinear monotone equations without any merit functions , 2008, Math. Comput..

[20]  Duan Li,et al.  On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.

[21]  Ya-Xiang Yuan,et al.  Convergence properties of the Fletcher-Reeves method , 1996 .

[22]  Stefania Bellavia,et al.  A Globally Convergent Newton-GMRES Subspace Method for Systems of Nonlinear Equations , 2001, SIAM J. Sci. Comput..

[23]  C. Storey,et al.  Global convergence result for conjugate gradient methods , 1991 .

[24]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[25]  José Mario Martínez,et al.  Spectral residual method without gradient information for solving large-scale nonlinear systems of equations , 2006, Math. Comput..

[26]  Dong-Hui Li,et al.  Descent Directions of Quasi-Newton Methods for Symmetric Nonlinear Equations , 2002, SIAM J. Numer. Anal..

[27]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[28]  Dong-Hui Li,et al.  A norm descent BFGS method for solving KKT systems of symmetric variational inequality problems , 2007, Optim. Methods Softw..

[29]  Yuhong Dai Nonlinear Conjugate Gradient Methods , 2011 .