Germanene: the germanium analogue of graphene

Recently, several research groups have reported the growth of germanene, a new member of the graphene family. Germanene is in many aspects very similar to graphene, but in contrast to the planar graphene lattice, the germanene honeycomb lattice is buckled and composed of two vertically displaced sub-lattices. Density functional theory calculations have revealed that free-standing germanene is a 2D Dirac fermion system, i.e. the electrons behave as massless relativistic particles that are described by the Dirac equation, which is the relativistic variant of the Schrödinger equation. Germanene is a very appealing 2D material. The spin-orbit gap in germanene (~24 meV) is much larger than in graphene (<0.05 meV), which makes germanene the ideal candidate to exhibit the quantum spin Hall effect at experimentally accessible temperatures. Additionally, the germanene lattice offers the possibility to open a band gap via for instance an externally applied electrical field, adsorption of foreign atoms or coupling with a substrate. This opening of the band gap paves the way to the realization of germanene based field-effect devices. In this topical review we will (1) address the various methods to synthesize germanene (2) provide a brief overview of the key results that have been obtained by density functional theory calculations and (3) discuss the potential of germanene for future applications as well for fundamentally oriented studies.

[1]  Philippe Sonnet,et al.  Continuous germanene layer on Al(111). , 2015, Nano letters.

[2]  R. Friedlein,et al.  Progress in the materials science of silicene , 2014, Science and technology of advanced materials.

[3]  P. Vogt,et al.  Epitaxial silicene: can it be strongly strained? , 2012 .

[4]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[5]  Jinying Wang,et al.  The rare two-dimensional materials with Dirac cones , 2014, 1410.5895.

[6]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[7]  S. Choudhury,et al.  Electronic and Chemical Properties of Germanene: The Crucial Role of Buckling , 2015 .

[8]  M. Ezawa Quantized conductance and field-effect topological quantum transistor in silicene nanoribbons , 2013, 1303.1245.

[9]  G. G. Guzmán-Verri,et al.  Electronic structure of silicon-based nanostructures , 2007, 1107.0075.

[10]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[11]  B. Poelsema,et al.  Self-organized, one-dimensional Pt nanowires on Ge(001) , 2003 .

[12]  M. Ezawa Hexagonally warped Dirac cones and topological phase transition in silicene superstructure , 2012, 1209.2580.

[13]  W. Auwärter,et al.  Boron Nitride Nanomesh , 2004, Science.

[14]  N. Takagi,et al.  Substrate-induced symmetry breaking in silicene. , 2013, Physical review letters.

[15]  Jaroslav Fabian,et al.  Tight-binding theory of the spin-orbit coupling in graphene structures , 2010 .

[16]  F. Bundy Pressure-temperature phase diagram of elemental carbon , 1989 .

[17]  M. Ezawa Photoinduced topological phase transition and a single Dirac-cone state in silicene. , 2012, Physical review letters.

[18]  G. Pourtois,et al.  Electronic properties of two-dimensional hexagonal germanium , 2010 .

[19]  K. Schwarz,et al.  Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. , 2007, Physical review letters.

[20]  P. Perfetti,et al.  sp2-like hybridization of silicon valence orbitals in silicene nanoribbons , 2011 .

[21]  P. Paufler Graphene: Carbon in Two Dimensions. By Mikhail I. Katsnelson. Cambridge University Press, 2012. Price (hardcover) GBP 45.00. ISBN-13: 9780521195409. , 2013 .

[22]  L. Peliti,et al.  Fluctuations in membranes with crystalline and hexatic order , 1987 .

[23]  Jiaxin Zheng,et al.  High performance silicene nanoribbon field effect transistors with current saturation , 2012 .

[24]  I. Mertig,et al.  Spin-split electronic states in graphene: Effects due to lattice deformation, Rashba effect, and adatoms by first principles , 2010 .

[25]  M I Katsnelson,et al.  Intrinsic ripples in graphene. , 2007, Nature materials.

[26]  Bobby G. Sumpter,et al.  Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene , 2014 .

[27]  Z. Shao,et al.  Intrinsic carrier mobility of germanene is larger than graphene's: first-principle calculations , 2014 .

[28]  Motohiko Ezawa,et al.  Valley-polarized metals and quantum anomalous Hall effect in silicene. , 2012, Physical review letters.

[29]  P Bampoulis,et al.  Germanene termination of Ge2Pt crystals on Ge(110). , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  The Rise of Elemental Two-Dimensional Materials Beyond Graphene , 2014 .

[31]  J. D. Carey,et al.  Beyond graphene: stable elemental monolayers of silicene and germanene. , 2014, ACS applied materials & interfaces.

[32]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[33]  K. Sankaran,et al.  Electronic properties of hydrogenated silicene and germanene , 2011 .

[34]  Shunqing Wu,et al.  Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices , 2014, Nanoscale Research Letters.

[35]  M I Katsnelson,et al.  Strong suppression of weak localization in graphene. , 2006, Physical review letters.

[36]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[37]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[38]  P. Wallace The Band Theory of Graphite , 1947 .

[39]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[40]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[41]  V. Fal’ko,et al.  Electrically tunable band gap in silicene , 2011, 1112.4792.

[42]  J. Brink,et al.  First-principles study of the interaction and charge transfer between graphene and metals , 2009, 0902.1203.

[43]  B. Poelsema,et al.  Quantum confinement between self-organized Pt nanowires on Ge(001). , 2005, Physical review letters.

[44]  H. Zandvliet Can a silicene transistor be realized , 2014 .

[45]  J. Brink,et al.  Doping graphene with metal contacts. , 2008, Physical review letters.

[46]  Jiaxin Zheng,et al.  Tunable and sizable band gap in silicene by surface adsorption , 2012, Scientific Reports.

[47]  Thomas Olsen,et al.  The random phase approximation applied to solids, molecules, and graphene-metal interfaces: From weak to strong binding regimes , 2012, 1211.6873.

[48]  W. Auwärter,et al.  XPD and STM investigation of hexagonal boron nitride on Ni(111) , 1999 .

[49]  M. Ezawa Electrically tunable conductance and edge modes in topological crystalline insulator thin films: minimal tight-binding model analysis , 2014, 1402.4297.

[50]  Tunable band gap in germanene by surface adsorption , 2013, 1312.5445.

[51]  C. Kamal,et al.  Silicene beyond mono-layers—different stacking configurations and their properties , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  M. Katsnelson,et al.  Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective , 2012, 1206.1222.

[53]  A. Datta,et al.  Understanding of the Buckling Distortions in Silicene , 2012 .

[54]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[55]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[56]  R. Gastel,et al.  The instability of silicene on Ag(111) , 2013 .

[57]  Amina Taleb-Ibrahimi,et al.  Exceptional ballistic transport in epitaxial graphene nanoribbons , 2013, Nature.

[58]  M. Chou,et al.  Stability and electronic properties of two-dimensional silicene and germanene on graphene , 2013, 1312.2329.

[59]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[60]  Wei Han,et al.  Graphene spintronics. , 2014, Nature nanotechnology.

[61]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[62]  R. Kurchania,et al.  Silicene and Germanene: A First Principle Study of Electronic Structure and Effect of Hydrogenation-Passivation , 2014 .

[63]  Georg Kresse,et al.  Graphene on Ni(111): Strong interaction and weak adsorption , 2011 .

[64]  Yeliang Wang,et al.  Buckled Germanene Formation on Pt(111) , 2014, Advanced materials.

[65]  Madan Dubey,et al.  Silicene field-effect transistors operating at room temperature. , 2015, Nature nanotechnology.

[66]  Jijun Zhao,et al.  Band gap opening in bilayer silicene by alkali metal intercalation , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[67]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[68]  F. Matsui,et al.  Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111). , 2013, Nano letters.

[69]  A. Seitsonen,et al.  Epitaxial hexagonal boron nitride on Ir(111): A work function template , 2014, 1404.7371.

[70]  B. Poelsema,et al.  The structural and electronic properties of platinum–germanide on Ge(111) , 2011 .

[71]  Mikhail I Katsnelson,et al.  Graphene as a prototype crystalline membrane. , 2013, Accounts of chemical research.

[72]  Electrical transport model of Silicene as a channel of field effect transistor. , 2014, Journal of nanoscience and nanotechnology.

[73]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[74]  T. P. Kaloni,et al.  Tuning the Structural, Electronic, and Magnetic Properties of Germanene by the Adsorption of 3$d$ Transition Metal Atoms , 2014, 1410.0395.

[75]  N. D. Mermin,et al.  Crystalline Order in Two Dimensions , 1968 .

[76]  M. Katsnelson,et al.  Schottky barriers at hexagonal boron nitride/metal interfaces: A first-principles study , 2014, 1401.6440.

[77]  A. Fazzio,et al.  Quantum spin Hall effect on germanene nanorod embedded in completely hydrogenated germanene , 2014, 1405.0470.

[78]  U. Schwingenschlogl,et al.  Stability of germanene under tensile strain , 2013, 1311.2807.

[79]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[80]  F. Bundy Phase Diagrams of Silicon and Germanium to 200 kbar, 1000°C , 1964 .

[81]  M. Saif Islam,et al.  Micro- and Nanotechnology Sensors, Systems, and Applications II , 2017 .

[82]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[83]  Wolfgang Windl,et al.  Stability and exfoliation of germanane: a germanium graphane analogue. , 2013, ACS nano.

[84]  M. Ezawa A topological insulator and helical zero mode in silicene under an inhomogeneous electric field , 2012, 1201.3687.

[85]  Mikhail I. Katsnelson Graphene by Mikhail I. Katsnelson , 2012 .

[86]  Y. Kamakura,et al.  Theoretical performance estimation of silicene, germanene, and graphene nanoribbon field-effect transistors under ballistic transport , 2014 .

[87]  Wei Hu,et al.  A first-principles study of gas adsorption on germanene. , 2014, Physical chemistry chemical physics : PCCP.

[88]  Takeda,et al.  Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. , 1994, Physical review. B, Condensed matter.

[89]  P. Jelínek,et al.  Silicene versus two-dimensional ordered silicide: Atomic and electronic structure of Si-(√19 ×√19 )R23.4 ∘ /Pt(111) , 2014, 1402.7275.

[90]  G. Brocks,et al.  Li intercalation in graphite: A van der waals density-functional study , 2014, 1410.5632.

[91]  P. Dirac The quantum theory of the electron , 1928 .

[92]  G. G. Guzmán-Verri,et al.  Is silicene the next graphene? , 2014, 1404.5691.

[93]  Spinodal decomposition driven formation of Pt-nanowires on Ge(001) , 2014 .

[94]  A. Farajian,et al.  Hydrogen compounds of group-IV nanosheets , 2010, 1007.2110.

[95]  M. Katsnelson Graphene: Carbon in Two Dimensions , 2006, cond-mat/0612534.

[96]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[97]  J. Boettger,et al.  First-principles calculation of the spin-orbit splitting in graphene , 2007 .

[98]  T. Wehling,et al.  Dirac materials , 2014, 1405.5774.

[99]  T. Greber,et al.  h-BN on Pd(1 1 0): a tunable system for self-assembled nanostructures? , 2005 .

[100]  Cheng-Cheng Liu,et al.  Quantum spin Hall effect in silicene and two-dimensional germanium. , 2011, Physical review letters.

[101]  M. E. Dávila,et al.  Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene , 2014, 1406.2488.

[102]  Abdelkader Kara,et al.  Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene , 2010 .

[103]  Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. , 2013, Nanoscale.

[104]  C. Ottaviani,et al.  Evidence of graphene-like electronic signature in silicene nanoribbons , 2010 .

[105]  H. Zandvliet The Ge(0 0 1) surface , 2003 .

[106]  J. Fabian,et al.  Band-structure topologies of graphene: Spin-orbit coupling effects from first principles , 2009, 0904.3315.

[107]  G. Schreckenbach,et al.  Electrically Engineered Band Gap in Two-Dimensional Ge, Sn, and Pb: A First-Principles and Tight-Binding Approach , 2015, 1504.04601.

[108]  A. Seitsonen,et al.  A review on silicene - New candidate for electronics , 2012 .