CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell

[1]  R. Mülhaupt,et al.  Scale-up and purification of graphite oxide as intermediate for functionalized graphene , 2014 .

[2]  Yufeng Zhang,et al.  One step synthesis of Pt/CeO2–graphene catalyst by microwave-assisted ethylene glycol process for direct methanol fuel cell , 2014 .

[3]  H. Abruña,et al.  Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. , 2014, Journal of the American Chemical Society.

[4]  Y. Yamauchi,et al.  Tailored design of functional nanoporous carbon materials toward fuel cell applications , 2014 .

[5]  Ning Zhang,et al.  Graphite oxide-supported Karstedt catalyst for the hydrosilylation of olefins with triethoxysilane , 2014 .

[6]  Haolin Tang,et al.  Balancing dimensional stability and performance of proton exchange membrane using hydrophilic nanofibers as the supports , 2013 .

[7]  Wensheng Yang,et al.  Graphene–CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells , 2013 .

[8]  Tsuyohiko Fujigaya,et al.  Fuel Cell Electrocatalyst Using Polybenzimidazole‐Modified Carbon Nanotubes As Support Materials , 2013, Advanced materials.

[9]  D. Boyd,et al.  Proton conductivity of columnar ceria thin-films grown by chemical vapor deposition. , 2013, Physical chemistry chemical physics : PCCP.

[10]  Haolin Tang,et al.  Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell , 2012 .

[11]  Bingbing Liu,et al.  Controlled Synthesis of CeO2/Graphene Nanocomposites with Highly Enhanced Optical and Catalytic Properties , 2012 .

[12]  Amit Kumar,et al.  Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). , 2012, Chemical communications.

[13]  M. Pan,et al.  A strategy for facile durability improvement of perfluorosulfonic electrolyte for fuel cells: Counter ion-assisted decarboxylation at elevated temperatures , 2012 .

[14]  D. Ho,et al.  Degradation Investigation of Nafion Ionomer Network In Catalyst Layers , 2011 .

[15]  Hideo Daimon,et al.  Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. , 2011, Nano letters.

[16]  M. Muhammed,et al.  Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature s , 2011 .

[17]  Pan Mu,et al.  Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells , 2011 .

[18]  Mathias Schulze,et al.  A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells , 2009 .

[19]  S. Jiang,et al.  Self-Assembled Pt/Mesoporous Silica−Carbon Electrocatalysts for Elevated-Temperature Polymer Electrolyte Membrane Fuel Cells , 2008 .

[20]  Edward T. Samulski,et al.  Exfoliated Graphene Separated by Platinum Nanoparticles , 2008 .

[21]  Fang Wang,et al.  A mechanical durability comparison of various perfluocarbon proton exchange membranes , 2008 .

[22]  S. Jiang,et al.  Highly durable proton exchange membranes for low temperature fuel cells. , 2007, The journal of physical chemistry. B.

[23]  San Ping Jiang,et al.  A comparative study of CCM and hot-pressed MEAs for PEM fuel cells , 2007 .

[24]  P. Shen,et al.  Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction. , 2005, The journal of physical chemistry. B.

[25]  Karren L. More,et al.  Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions , 2005 .

[26]  R. Makharia,et al.  Degradation of PEMFC Observed on NSTF Electrodes , 2014 .

[27]  Jiujun Zhang,et al.  A review of accelerated stress tests of MEA durability in PEM fuel cells , 2009 .

[28]  Rodney L. Borup,et al.  Durability of PEFCs at High Humidity Conditions , 2005 .