The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community

Abstract The focus of a new experiment, set up in Jena in spring 2002, are the effects of biodiversity on element cycles and the interaction of plant diversity with herbivores and soil fauna. The experimental design explicitly addresses criticisms provoked by previous biodiversity experiments. In particular, the choice of functional groups, the statistical separation of sampling versus complementarity effects, and testing for the effects of particular functional groups differ from previous experiments. Based on a species pool of 60 plant species common to the Central European Arrhenatherion grasslands, mixtures of one to 16 (60) species and of one to four plant functional groups were established on 90 plots (20 m × 20 m) with nested experiments. In order to test specific hypotheses 390 additional small-area plots (3.5 m × 3.5 m) were set-up. Exact replicates of all species mixtures serve to assess the variability in ecosystem responses. In a dominance experiment, the effects of interactions among nine selected highly productive species are studied. Each species is grown as monoculture replicated once. Effekte der Biodiversitat auf Elementkreislaufe und Wechselwirkungen der pflanzlichen Artenvielfalt mit Bodenfauna und Herbivoren stehen im Mitttelpunkt eines neuen Experiments, das im Fruhjahr 2002 in Jena eingerichtet wurde. Das Versuchsdesign berucksichtigt ausdrucklich die Kritik, die an den Aufbau fruherer Biodiversitatsversuche gerichtet wurde. Die Auswahl funktioneller Gruppen von Pflanzenarten, die statistischen Moglichkeiten, die Effekte des “Sampling” gegen Komplementaritat zu trennen sowie den Einflus funktioneller Gruppen zu uberprufen, unterscheiden dieses Experiment von fruheren Versuchen. Sechzig typische Pflanzenarten der zentraleuropaischen Frischwiesen (Arrhenatherion) bilden den Artenpool fur den Versuch. Auf 90 Flachen wurden Artenmischungen etabliert, die 1 bis 16 (60) Arten und 1 bis 4 funktionelle Gruppen dieser Pflanzenarten enthalten. Die Versuchsparzellen haben eine Grose von 20 m × 20 m, auf denen in genesteter Anordnung verschiedene Teilexperimente durchgefuhrt werden. Zusatzlich wurden 390 kleine Parzellen (3.5 m × 3.5 m) angelegt, um spezifische Hypothesen zu uberprufen. Alle Arten werden hier mit je einer Wiederholung als Monokulturen kultiviert. Identische Wiederholungen aller Artenmischungen sollen deren Variabilitat untersuchen. In einem Dominanz-Versuch werden die Effekte der Wechselwirkungen zwischen 9 ausgewahlten hochproduktiven Arten untersucht.

[1]  E. Schulze,et al.  THE ROLE OF PLANT DIVERSITY AND COMPOSITION FOR NITRATE LEACHING IN GRASSLANDS , 2003 .

[2]  H. Setälä,et al.  Studying the effects of plant species richness on ecosystem functioning: does the choice of experimental design matter? , 2002, Oecologia.

[3]  P. Högberg,et al.  How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities , 2002, Oecologia.

[4]  A. Troumbis,et al.  The role of legumes as a component of biodiversity in a cross‐European study of grassland biomass nitrogen , 2002 .

[5]  M. Loreau,et al.  Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments , 2002 .

[6]  M. Bradford,et al.  Biodiversity and ecosystem productivity: implications for carbon storage , 2002 .

[7]  Kevin J. Gaston,et al.  Functional diversity (FD), species richness and community composition , 2002 .

[8]  Petr Šmilauer,et al.  CANOCO 4.5 Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination , 2002 .

[9]  A. Weigelt,et al.  Does plant competition intensity rather depend on biomass or on species identity , 2002 .

[10]  J. P. Grime,et al.  Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges , 2001, Science.

[11]  Michel Loreau,et al.  Partitioning selection and complementarity in biodiversity experiments , 2001, Nature.

[12]  Christian Körner,et al.  Biosphere responses to CO2 enrichment. , 2000 .

[13]  Michel Loreau,et al.  Biodiversity and ecosystem functioning: recent theoretical advances , 2000 .

[14]  J. P. Grime,et al.  No consistent effect of plant diversity on productivity. , 2000, Science.

[15]  F. Chapin,et al.  Consequences of changing biodiversity , 2000, Nature.

[16]  Jason D. Hoeksema,et al.  Linking biodiversity to ecosystem function: implications for conservation ecology , 2000, Oecologia.

[17]  Pereira,et al.  Plant diversity and productivity experiments in european grasslands , 1999, Science.

[18]  B. Schmid,et al.  ECOSYSTEM EFFECTS OF BIODIVERSITY: A CLASSIFICATION OF HYPOTHESES AND EXPLORATION OF EMPIRICAL RESULTS , 1999 .

[19]  G. Allison The Implications of Experimental Design for Biodiversity Manipulations , 1999, The American Naturalist.

[20]  M. Scherer‐Lorenzen Effects of plant diversity on ecosystem processes in experimental grassland communities , 1999 .

[21]  J. Bengtsson Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function , 1998 .

[22]  Michel Loreau,et al.  Separating sampling and other effects in biodiversity experiments , 1998 .

[23]  A. Hector The effect of diversity on productivity : detecting the role of species complementarity , 1998 .

[24]  S. Lavorel,et al.  Plant functional classifications: from general groups to specific groups based on response to disturbance. , 1997, Trends in ecology & evolution.

[25]  L. Aarssen High productivity in grassland ecosystems : effected by species diversity or productive species ? , 1997 .

[26]  P. Vitousek,et al.  The Effects of Plant Composition and Diversity on Ecosystem Processes , 1997 .

[27]  J. P. Grime Biodiversity and Ecosystem Function: The Debate Deepens , 1997, Science.

[28]  P. Reich,et al.  The Influence of Functional Diversity and Composition on Ecosystem Processes , 1997 .

[29]  S. Díaz,et al.  Plant functional types and ecosystem function in relation to global change , 1997 .

[30]  Michael A. Huston,et al.  Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity , 1997, Oecologia.

[31]  O. Schmitz,et al.  Biodiversity and the productivity and stability of ecosystems. , 1996, Trends in ecology & evolution.

[32]  W. Brand High precision isotope ratio monitoring techniques in mass spectrometry. , 1996, Journal of mass spectrometry : JMS.

[33]  D. Tilman,et al.  Productivity and sustainability influenced by biodiversity in grassland ecosystems , 1996, Nature.

[34]  M. Donoghue,et al.  Phylogeny and Ecology Reconsidered , 1995 .

[35]  Michelle R. Leishman,et al.  On misinterpreting the phylogenetic correction , 1995 .

[36]  H. Mooney,et al.  Biodiversity and Ecosystem Function , 1994, Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine.

[37]  C. Körner,et al.  Scaling from Species to Vegetation: The Usefulness of Functional Groups , 1994 .

[38]  Michelle R. Leishman,et al.  Classifying plants into groups on the basis of associations of individual traits: evidence from Australian semi-arid woodlands , 1992 .

[39]  M. Fenner Seeds: The Ecology of Regeneration in Plant Communities , 1992 .

[40]  Ruprecht Düll,et al.  Zeigerwerte von Pflanzen in Mitteleuropa , 1992 .

[41]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[42]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[43]  Dieter Frank,et al.  Biologisch-ökologische Daten zur Flora der DDR , 1990 .

[44]  H. Ellenberg,et al.  Vegetation Mitteleuropas mit den Alpen , 1984 .

[45]  J. P. Grime,et al.  A COMPARATIVE STUDY OF GERMINATION CHARACTERISTICS IN A LOCAL FLORA , 1981 .

[46]  D. W. Shimwell,et al.  The study of vegetation. , 1981 .

[47]  H. A. Roberts PERIODICITY OF SEEDLING EMERGENCE AND SEED SURVIVAL IN SOME UMBELLIFERAE , 1979 .

[48]  J. Barkman The investigation of vegetation texture and structure , 1979 .

[49]  G. Hegi,et al.  Illustrierte Flora von Mittel-Europa , 1975 .

[50]  J. Doe Soil Map of the World , 1957, Nature.

[51]  P. Stokes A Physiological Study of Embryo Development in Heracleum sphondylium L II. The Effect of Temperature on After-ripening , 1952 .

[52]  P. Stokes A Physiological Study of Embryo Development in Heracleum sphondylium L.: I. The Effect of Temperature on Embryo Development , 1952 .