Effect of gradient microstructure induced by pre-torsion on hydrogen embrittlement of pure iron

[1]  H. Bei,et al.  Hydrogen-enhanced compatibility constraint for intergranular failure in FCC FeNiCoCrMn high-entropy alloy , 2021 .

[2]  D. Xie,et al.  Hydrogen enhanced cracking via dynamic formation of grain boundary inside aluminium crystal , 2021, Corrosion Science.

[3]  Cang Li,et al.  Metabolomic Profiles in the Intestine of Shrimp Infected by White Spot Syndrome Virus and Antiviral Function of the Metabolite Linoleic Acid in Shrimp , 2021, The Journal of Immunology.

[4]  Xubin Wu,et al.  Effect of hydrogen charging time on hydrogen blister and hydrogen-induced cracking of pure iron , 2021 .

[5]  Tomohiko Hojo,et al.  Effect of solution treatment temperature on grain boundary composition and environmental hydrogen embrittlement of an Al–Zn–Mg–Cu alloy , 2021, Vacuum.

[6]  Yaowen Liu,et al.  Effect of gradient microstructure on the strength and ductility of medium-entropy alloy processed by severe torsion deformation , 2021 .

[7]  T. Hiramatsu,et al.  Effects of Microstructure on the Hydrogen Embrittlement Resistance of Ultra High Strength Martensitic Steel Sheets , 2021 .

[8]  J. P. Ponciano Gomes,et al.  Hydrogen embrittlement of API 5L X65 pipeline steel in CO2 containing low H2S concentration environment , 2020 .

[9]  T. Nguyen,et al.  Damage assessment and mechanical performance of Cr-Mo steel used in hydrogen storage vessels , 2020 .

[10]  T. Nguyen,et al.  Hydrogen embrittlement susceptibility of X70 pipeline steel weld under a low partial hydrogen environment , 2020, International Journal of Hydrogen Energy.

[11]  M. Koyama,et al.  Effects of Mn Content and Grain Size on Hydrogen Embrittlement Susceptibility of Face-Centered Cubic High-Entropy Alloys , 2020, Metallurgical and Materials Transactions A.

[12]  M. Koyama,et al.  Effects of hydrogen content that alters damage evolution mechanisms in SUH 660 precipitation-strengthened Fe–Cr–Ni steel , 2020 .

[13]  K. Wolski,et al.  A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17–4 PH stainless steel , 2020 .

[14]  Junghoon Lee,et al.  Role of Hydrogen and Temperature in Hydrogen Embrittlement of Equimolar CoCrFeMnNi High-entropy Alloy , 2020, Metals and Materials International.

[15]  Jia Wan,et al.  Dual gradient microstructure to simultaneously improve strength and electrical conductivity of aluminum wire , 2020 .

[16]  I. Mishin,et al.  Effect of Hydrogen on the Deformation Behavior and Localization of Plastic Deformation of the Ultrafine-Grained Zr–1Nb Alloy , 2020, Metals.

[17]  E. Akiyama,et al.  Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention , 2020, Acta Metallurgica Sinica (English Letters).

[18]  B. Campillo,et al.  Hydrogen embrittlement suscetibility on X-120 microalloyed steel as function of tempering temperature , 2020 .

[19]  Zixuan Yang,et al.  Stress-induced hydrogen redistribution and corresponding fracture behavior of Q960E steel at different hydrogen content , 2020 .

[20]  S. Kuramoto,et al.  Effect of strain rate on environmental hydrogen embrittlement susceptibility of a severely cold-rolled Al–Cu alloy , 2020 .

[21]  Xusheng Yang,et al.  Atomistic simulation study of the grain-size effect on hydrogen embrittlement of nanograined Fe , 2020 .

[22]  J. Cairney,et al.  Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates , 2020, Science.

[23]  Min Song,et al.  Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures , 2019, International Journal of Plasticity.

[24]  G. Cheng,et al.  Effect of Plastic Deformation on Hydrogen Embrittlement Sensitivity and Strength of 2.25Cr1Mo0.25V Steel by Synchronous Hydrogen Charging , 2019, Volume 1: Codes and Standards.

[25]  D. Wan,et al.  Effect of electrochemical charging on the hydrogen embrittlement susceptibility of alloy 718 , 2019, Acta Materialia.

[26]  Jee-Hyun Kang,et al.  Effect of grain size on hydrogen embrittlement in stable austenitic high-Mn TWIP and high-N stainless steels , 2019, International Journal of Hydrogen Energy.

[27]  E. Han,et al.  Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel , 2019, Journal of Materials Science & Technology.

[28]  Xinfeng Li,et al.  Hydrogen-assisted failure of laser melting additive manufactured IN718 superalloy , 2019, Corrosion Science.

[29]  H. Abreu,et al.  The effect of prior austenite grain size on hydrogen embrittlement of Co-containing 18Ni 300 maraging steel , 2019, International Journal of Hydrogen Energy.

[30]  M. Koyama,et al.  Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy , 2019, International Journal of Hydrogen Energy.

[31]  H. Fu,et al.  Superb cryogenic strength of equiatomic CrCoNi derived from gradient hierarchical microstructure , 2019, Journal of Materials Science & Technology.

[32]  Xiaogang Li,et al.  Effect of pre-strain on microstructure and hydrogen embrittlement of K-TIG welded austenitic stainless steel , 2019, Corrosion Science.

[33]  E. Akiyama,et al.  Hydrogen embrittlement of high strength steam turbine last stage blade steels: Comparison between PH17-4 steel and PH13-8Mo steel , 2019, Materials Science and Engineering: A.

[34]  Jing Liu,et al.  Effect of Pre-strain on Hydrogen Embrittlement Susceptibility of DP600 Steel , 2018 .

[35]  Huajian Gao,et al.  Extra strengthening and work hardening in gradient nanotwinned metals , 2018, Science.

[36]  I. M. Robertson,et al.  Hydrogen embrittlement of the equi-molar FeNiCoCr alloy , 2018, Acta Materialia.

[37]  D. Ponge,et al.  Hydrogen embrittlement of an interstitial equimolar high-entropy alloy , 2018 .

[38]  Qingsong Mei,et al.  Hydrogen embrittlement controlled by reaction of dislocation with grain boundary in alpha-iron , 2018, International Journal of Plasticity.

[39]  Cheolho Park,et al.  Effect of grain size on the resistance to hydrogen embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing , 2017 .

[40]  E. Akiyama,et al.  Effect of heat treatment on hydrogen-assisted fracture behavior of PH13-8Mo steel , 2017 .

[41]  Y. Mine,et al.  Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel , 2017 .

[42]  M. Safari,et al.  Friction stir modification of GTA 7075-T6 Al alloy weld joints: EBSD study and microstructural evolutions , 2017 .

[43]  L. Chai,et al.  Evolution of gradient microstructure in an extruded AZ31 rod during torsion and annealing and its effects on mechanical properties , 2017 .

[44]  C. Dong,et al.  The effect of hydrogen on the evolution of intergranular cracking: a cross-scale study using first-principles and cohesive finite element methods , 2016 .

[45]  N. Tsuji,et al.  Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel , 2016 .

[46]  Xiaolong Song,et al.  Effect of cathodic hydrogen-charging current density on mechanical properties of prestrained high strength steels , 2015 .

[47]  Pei Li,et al.  Failure Analysis of High Strength Steel Bar Used in a Wind Turbine Foundation , 2015, Journal of Failure Analysis and Prevention.

[48]  Young‐kook Lee,et al.  The effect of pre-strain on hydrogen embrittlement in 310S stainless steel , 2014 .

[49]  May L. Martin,et al.  Hydrogen-induced intergranular failure of iron , 2014 .

[50]  Huajian Gao,et al.  Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins , 2014, Nature Communications.

[51]  R. Kayano,et al.  Effects of Grain Size on Hydrogen Environment Embrittlement of High Strength Low Alloy Steel in 45 MPa Gaseous Hydrogen , 2010 .

[52]  S. Chan,et al.  Effects of ferrite/pearlite alignment on the hydrogen permeation in a AISI 4130 steel , 1996 .

[53]  S. Chan,et al.  Hydrogen embrittlement of AISI 4130 steel with an alternate ferrite/pearlite banded structure , 1991 .

[54]  C. D. Beachem,et al.  A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) , 1972 .

[55]  D. Wan,et al.  Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope , 2021 .

[56]  C. S. Marchi,et al.  Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels , 2016 .

[57]  Dong Wei-na Effect of Plastic Pre-deformation on Hydrogen Embrittlement of 316L Austenitic Stainless Steel , 2014 .

[58]  D. Han,et al.  Effect of prestraining on hydrogen absorption and delayed fracture behavior of a medium-carbon TRIP steel , 2012 .

[59]  T. Takasugi,et al.  The effect of pre-deformation on moisture-induced embrittlement of Ni3Al alloys , 1997 .

[60]  James R. Rice,et al.  Embrittlement of interfaces by solute segregation , 1989 .