Local Fractal Fourier Transform and Applications

In this manuscript, we review fractal calculus and the analogues of both local Fourier transform with its related properties and Fourier convolution theorem are proposed with proofs in fractal calculus. The fractal Dirac delta with its derivative and the fractal Fourier transform of the Dirac delta are also defined. In addition, some important applications of the local fractal Fourier transform are presented in this paper such as the fractal electric current in a simple circuit, the fractal second order ordinary differential equation, and the fractal Bernoulli-Euler beam equation. All discussed applications are closely related to the fact that, in fractal calculus, a useful local fractal derivative is a generalized local derivative in the standard calculus sense. In addition, a comparative analysis is also carried out to explain the benefits of this fractal calculus parameter on the basis of the additional alpha parameter, which is the dimension of the fractal set, such that when $alpha=1$, we obtain the same results in the standard calculus.

[1]  A. D. Gangal,et al.  Calculus on fractal subsets of real line - I: formulation , 2003 .

[2]  Luciano Pietronero,et al.  FRACTALS IN PHYSICS , 1990 .

[3]  Alireza Khalili Golmankhaneh,et al.  Sub- and super-diffusion on Cantor sets: Beyond the paradox , 2018 .

[4]  Michael F. Shlesinger,et al.  FRACTAL TIME IN CONDENSED MATTER , 1988 .

[5]  D. Baleanu,et al.  Non-local Integrals and Derivatives on Fractal Sets with Applications , 2017, 1701.01054.

[6]  Cemil Tunç,et al.  On the Lipschitz condition in the fractal calculus , 2017 .

[7]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[8]  Dumitru Baleanu,et al.  Diffusion on Middle-ξ Cantor Sets , 2018, Entropy.

[9]  Michel L. Lapidus,et al.  Complex Dimensions and Zeta Functions: Geometry and spectra of fractal strings , 2012 .

[10]  Marek Czachor,et al.  Waves Along Fractal Coastlines: From Fractal Arithmetic to Wave Equations , 2017, Acta Physica Polonica B.

[11]  Arran Fernandez,et al.  Random Variables and Stable Distributions on Fractal Cantor Sets , 2019, Fractal and Fractional.

[12]  Martin T. Barlow,et al.  Brownian motion on the Sierpinski gasket , 1988 .

[13]  C. Cattani,et al.  Fractal Logistic Equation , 2019, Fractal and Fractional.

[14]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[15]  A. Roberts,et al.  Generalization of the fractal Einstein law relating conduction and diffusion on networks. , 2009, Physical review letters.

[16]  Resat Yilmazer,et al.  Economic Models Involving Time Fractal , 2021 .

[17]  Alireza Khalili Golmankhaneh On the Fractal Langevin Equation , 2019, Fractal and Fractional.

[18]  Cemil Tunç,et al.  Sumudu transform in fractal calculus , 2019, Appl. Math. Comput..

[19]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[20]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[21]  Ahmed Ali Mohammed,et al.  Integral transforms and their applications , 2009 .

[22]  Susie Vrobel Fractal Time: Why a Watched Kettle Never Boils , 2011 .

[23]  A. Golmankhaneh,et al.  Equilibrium and non-equilibrium statistical mechanics with generalized fractal derivatives: A review , 2021 .

[24]  Editors , 2003 .

[25]  Robert S. Strichartz,et al.  Differential Equations on Fractals: A Tutorial , 2006 .

[26]  R. Strichartz ANALYSIS ON FRACTALS , 1999 .

[27]  Y. Pesin Dimension Theory in Dynamical Systems: Contemporary Views and Applications , 1997 .

[28]  S. Krantz Fractal geometry , 1989 .

[29]  K. Falconer Techniques in fractal geometry , 1997 .

[30]  R. D. Richtmyer,et al.  Principles of Advanced Mathematical Physics , 1978 .

[31]  About Kepler’s Third Law on fractal-time spaces , 2017, Ain Shams Engineering Journal.

[32]  A. Golmankhaneh,et al.  Fractal Calculus of Functions on Cantor Tartan Spaces , 2018, Fractal and Fractional.

[33]  L. Nottale,et al.  Fractals and nonstandard analysis , 1984 .

[34]  A. D. Gangal,et al.  CALCULUS ON FRACTAL SUBSETS OF REAL LINE — II: CONJUGACY WITH ORDINARY CALCULUS , 2011 .

[35]  Seema Satin,et al.  CALCULUS ON FRACTAL CURVES IN Rn , 2009, 0906.0676.

[36]  Alexander S. Balankin,et al.  A continuum framework for mechanics of fractal materials I: from fractional space to continuum with fractal metric , 2015 .

[37]  Wilfredo Urbina,et al.  On Cantor-like sets and Cantor-Lebesgue singular functions , 2014, 1403.6554.