Premature aging/senescence in cancer cells facing therapy: good or bad?

[1]  A. Azmi,et al.  Therapeutic targeting of replicative immortality , 2015, Seminars in cancer biology.

[2]  F. Rodier,et al.  Manipulating senescence in health and disease: emerging tools , 2015, Cell cycle.

[3]  N. LeBrasseur,et al.  The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs , 2015, Aging cell.

[4]  F. Rodier,et al.  DDR-mediated crosstalk between DNA-damaged cells and their microenvironment , 2015, Front. Genet..

[5]  J. Hoeijmakers,et al.  An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. , 2014, Developmental cell.

[6]  N. Isakov,et al.  PKCη promotes senescence induced by oxidative stress and chemotherapy , 2014, Cell Death and Disease.

[7]  James H. Doroshow,et al.  Translational research in oncology—10 years of progress and future prospects , 2014, Nature Reviews Clinical Oncology.

[8]  R. Poon,et al.  p53 deficiency enhances mitotic arrest and slippage induced by pharmacological inhibition of Aurora kinases , 2014, Oncogene.

[9]  Manuel Serrano,et al.  Cellular senescence: from physiology to pathology , 2014, Nature Reviews Molecular Cell Biology.

[10]  J. Sharpe,et al.  Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning , 2013, Cell.

[11]  Soyoung Lee,et al.  Synthetic lethal metabolic targeting of cellular senescence in cancer therapy , 2013, Nature.

[12]  Le Xu,et al.  Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells , 2013, Cancer science.

[13]  Weijun Su,et al.  Induction of p38δ Expression Plays an Essential Role in Oncogenic ras-Induced Senescence , 2013, Molecular and Cellular Biology.

[14]  J. Campisi,et al.  Mitochondrial DNA damage induces apoptosis in senescent cells , 2013, Cell Death and Disease.

[15]  T. Brümmendorf,et al.  Pluripotent stem cells escape from senescence-associated DNA methylation changes , 2013, Genome research.

[16]  K. Vousden,et al.  p53 mutations in cancer , 2013, Nature Cell Biology.

[17]  Y. Liu,et al.  Dexamethasone Reduces Sensitivity to Cisplatin by Blunting p53-Dependent Cellular Senescence in Non-Small Cell Lung Cancer , 2012, PloS one.

[18]  R. Splittgerber,et al.  Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-κB impairs this drug-induced senescence , 2012, EMBO molecular medicine.

[19]  Sung Young Kim,et al.  Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells. , 2012, International journal of oncology.

[20]  Judith Campisi,et al.  Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B , 2012, Nature Medicine.

[21]  J. Ewald,et al.  Decreased skp2 expression is necessary but not sufficient for therapy-induced senescence in prostate cancer. , 2012, Translational oncology.

[22]  P. Muti,et al.  SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells , 2012, Oncogene.

[23]  A. El‐Naggar,et al.  p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. , 2012, Cancer cell.

[24]  L. Zender,et al.  Immune surveillance of senescent cells--biological significance in cancer- and non-cancer pathologies. , 2012, Carcinogenesis.

[25]  F. D. D. Fagagna,et al.  Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation , 2012, Nature Cell Biology.

[26]  J. Gil,et al.  Senescence: a new weapon for cancer therapy. , 2012, Trends in cell biology.

[27]  J. Campisi,et al.  Epithelial-Mesenchymal Transition Induced by Senescent Fibroblasts , 2012, Cancer Microenvironment.

[28]  F. D. D. Fagagna,et al.  Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation , 2012, Nature Cell Biology.

[29]  M. Tainsky,et al.  Epigenetic Silencing of IRF7 and/or IRF5 in Lung Cancer Cells Leads to Increased Sensitivity to Oncolytic Viruses , 2011, PloS one.

[30]  T. Luedde,et al.  Senescence surveillance of pre-malignant hepatocytes limits liver cancer development , 2011, Nature.

[31]  N. LeBrasseur,et al.  Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders , 2011, Nature.

[32]  Xiaowo Wang,et al.  Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. , 2011, Genes & development.

[33]  J. Campisi,et al.  Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype* , 2011, The Journal of Biological Chemistry.

[34]  J. Grichnik,et al.  Nevus Senescence , 2011, ISRN dermatology.

[35]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[36]  J. Campisi,et al.  Four faces of cellular senescence , 2011, The Journal of cell biology.

[37]  Bernadett Papp,et al.  Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape , 2011, Cell Research.

[38]  J. Campisi,et al.  DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion , 2011, Journal of Cell Science.

[39]  D. Peeper,et al.  The essence of senescence. , 2010, Genes & development.

[40]  David F Jarrard,et al.  Therapy-induced senescence in cancer. , 2010, Journal of the National Cancer Institute.

[41]  Luke A. Gilbert,et al.  DNA Damage-Mediated Induction of a Chemoresistant Niche , 2010, Cell.

[42]  Jing Wang,et al.  Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence , 2010, Nature.

[43]  J. Gil,et al.  Induced pluripotent stem cells and senescence: learning the biology to improve the technology , 2010, EMBO reports.

[44]  Anil Wipat,et al.  Feedback between p21 and reactive oxygen production is necessary for cell senescence , 2010, Molecular systems biology.

[45]  K. Chin,et al.  A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in Mouse Cells Dependent on Physiological Oxygen , 2010, PloS one.

[46]  L. Hartmann,et al.  Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. , 2010, Cancer research.

[47]  J. Campisi,et al.  The senescence-associated secretory phenotype: the dark side of tumor suppression. , 2010, Annual review of pathology.

[48]  Hua Yu,et al.  Sunitinib Induces Apoptosis and Growth Arrest of Medulloblastoma Tumor Cells by Inhibiting STAT3 and AKT Signaling Pathways , 2010, Molecular Cancer Research.

[49]  J. Campisi,et al.  Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo , 2009, Nature Protocols.

[50]  Melissa St-Pierre,et al.  Aging increases p16 INK4a expression in vascular smooth-muscle cells. , 2009, Bioscience reports.

[51]  C. Pereira,et al.  Senescence impairs successful reprogramming to pluripotent stem cells. , 2009, Genes & development.

[52]  Manuel Serrano,et al.  A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity , 2009, Nature.

[53]  T. Ichisaka,et al.  Suppression of induced pluripotent stem cell generation by the p53–p21 pathway , 2009, Nature.

[54]  M. Blasco,et al.  The Ink4/Arf locus is a barrier for iPS cell reprogramming , 2009, Nature.

[55]  H. Saya,et al.  Real-time in vivo imaging of p16Ink4a reveals cross talk with p53 , 2009, The Journal of cell biology.

[56]  E. Flores,et al.  Rescue of key features of the p63‐null epithelial phenotype by inactivation of Ink4a and Arf , 2009, The EMBO journal.

[57]  J. Campisi,et al.  Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion , 2009, Nature Cell Biology.

[58]  Baojie Li,et al.  p53 Deficiency Leads to Compensatory Up-Regulation of p16INK4a , 2009, Molecular Cancer Research.

[59]  S. Anton,et al.  Molecular inflammation: Underpinnings of aging and age-related diseases , 2009, Ageing Research Reviews.

[60]  Judith Campisi,et al.  Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor , 2008, PLoS biology.

[61]  D. Drummond-Barbosa Stem Cells, Their Niches and the Systemic Environment: An Aging Network , 2008, Genetics.

[62]  A. L. Fridman,et al.  Critical pathways in cellular senescence and immortalization revealed by gene expression profiling , 2008, Oncogene.

[63]  S. Lowe,et al.  Senescence of Activated Stellate Cells Limits Liver Fibrosis , 2008, Cell.

[64]  D. Peeper,et al.  Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network , 2008, Cell.

[65]  Jonathan Melamed,et al.  Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence , 2008, Cell.

[66]  A. Senderowicz,et al.  S-Phase-specific Activation of PKCα Induces Senescence in Non-small Cell Lung Cancer Cells* , 2008, Journal of Biological Chemistry.

[67]  Michael R. Green,et al.  Oncogenic BRAF Induces Senescence and Apoptosis through Pathways Mediated by the Secreted Protein IGFBP7 , 2008, Cell.

[68]  Xinbin Chen,et al.  DEC1, a Basic Helix-Loop-Helix Transcription Factor and a Novel Target Gene of the p53 Family, Mediates p53-dependent Premature Senescence* , 2008, Journal of Biological Chemistry.

[69]  Thierry Soussi,et al.  Shaping genetic alterations in human cancer: the p53 mutation paradigm. , 2007, Cancer cell.

[70]  J. Campisi,et al.  Cellular senescence: when bad things happen to good cells , 2007, Nature Reviews Molecular Cell Biology.

[71]  K. Lim,et al.  Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. , 2007, Genes & development.

[72]  P. Hornsby,et al.  Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. , 2007, Cancer research.

[73]  D. Walker,et al.  Evidence that aging and amyloid promote microglial cell senescence. , 2007, Rejuvenation research.

[74]  Carlos Cordon-Cardo,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2007, Nature.

[75]  G. Castellani,et al.  Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans , 2007, Mechanisms of Ageing and Development.

[76]  Dimitris Kletsas,et al.  Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints , 2006, Nature.

[77]  Aaron Bensimon,et al.  Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication , 2006, Nature.

[78]  Jianmin Zhang,et al.  p16INK4a modulates p53 in primary human mammary epithelial cells. , 2006, Cancer research.

[79]  G. Mills,et al.  The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis , 2006, Proceedings of the National Academy of Sciences.

[80]  T. Tsuji,et al.  Alveolar cell senescence in patients with pulmonary emphysema. , 2006, American journal of respiratory and critical care medicine.

[81]  J. Campisi,et al.  Secretion of Vascular Endothelial Growth Factor by Primary Human Fibroblasts at Senescence* , 2006, Journal of Biological Chemistry.

[82]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[83]  R. Bernards,et al.  Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence , 2006, Nature Cell Biology.

[84]  Robert A. Weinberg,et al.  Stromal Fibroblasts in Cancer: A Novel Tumor-Promoting Cell Type , 2006, Cell cycle.

[85]  R. Randall,et al.  Doxorubicin induces cell senescence preferentially over apoptosis in the FU‐SY‐1 synovial sarcoma cell line , 2006, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[86]  Jun Chen,et al.  Contribution of p16INK4a and p21CIP1 pathways to induction of premature senescence of human endothelial cells: permissive role of p53. , 2006, American journal of physiology. Heart and circulatory physiology.

[87]  D. DiMaio,et al.  Senescence‐associated β‐galactosidase is lysosomal β‐galactosidase , 2006 .

[88]  P. Nelson,et al.  The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. , 2006, Cancer research.

[89]  Y. Ouchi,et al.  Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras–MAPK signaling in human cancer cells , 2006, Oncogene.

[90]  R. Reddel,et al.  The first molecular details of ALT in human tumor cells. , 2005, Human molecular genetics.

[91]  S. Schwarze,et al.  The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. , 2005, Neoplasia.

[92]  M. Barbacid,et al.  Tumour biology: Senescence in premalignant tumours , 2005, Nature.

[93]  H. Stein,et al.  Oncogene-induced senescence as an initial barrier in lymphoma development , 2005, Nature.

[94]  J. Shay,et al.  BRAFE600-associated senescence-like cell cycle arrest of human naevi , 2005, Nature.

[95]  Jason A. Koutcher,et al.  Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis , 2005, Nature.

[96]  J. Campisi,et al.  Caspase‐independent cytochrome c release is a sensitive measure of low‐level apoptosis in cell culture models , 2005, Aging cell.

[97]  Jun Yao,et al.  Distinct epigenetic changes in the stromal cells of breast cancers , 2005, Nature Genetics.

[98]  L. Elmore,et al.  p53-Dependent accelerated senescence induced by ionizing radiation in breast tumour cells , 2005, International journal of radiation biology.

[99]  R. Weinberg,et al.  The signals and pathways activating cellular senescence. , 2005, The international journal of biochemistry & cell biology.

[100]  N. Sharpless,et al.  Ink4a/Arf expression is a biomarker of aging. , 2004, The Journal of clinical investigation.

[101]  Stanley N Cohen,et al.  Disparate effects of telomere attrition on gene expression during replicative senescence of human mammary epithelial cells cultured under different conditions , 2004, Oncogene.

[102]  J. Campisi,et al.  Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation , 2004, Journal of Cell Science.

[103]  Rameen Beroukhim,et al.  Molecular characterization of the tumor microenvironment in breast cancer. , 2004, Cancer cell.

[104]  W. Hahn,et al.  Mitogen Stimulation Cooperates with Telomere Shortening To Activate DNA Damage Responses and Senescence Signaling , 2004, Molecular and Cellular Biology.

[105]  I. Roninson,et al.  Tumor suppressor maspin is up-regulated during keratinocyte senescence, exerting a paracrine antiangiogenic activity. , 2004, Cancer research.

[106]  K. Ohuchida,et al.  Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. , 2004, Cancer research.

[107]  D. Bar-Sagi,et al.  Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. , 2004, Cancer cell.

[108]  K. Mohammad,et al.  Modulation of mammalian life span by the short isoform of p53. , 2004, Genes & development.

[109]  R. DePinho,et al.  Telomeres, stem cells, senescence, and cancer. , 2004, The Journal of clinical investigation.

[110]  N. Carter,et al.  A DNA damage checkpoint response in telomere-initiated senescence , 2003, Nature.

[111]  Masashi Narita,et al.  Reversal of human cellular senescence: roles of the p53 and p16 pathways , 2003, The EMBO journal.

[112]  S. Lowe,et al.  Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence , 2003, Cell.

[113]  S. Melov,et al.  Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts , 2003, Nature Cell Biology.

[114]  Jiri Bartek,et al.  Chk1 and Chk2 kinases in checkpoint control and cancer. , 2003, Cancer cell.

[115]  D. Brenner,et al.  Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype , 2003, Hepatology.

[116]  Satoshi Matsumoto,et al.  Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas , 2002, Nature Genetics.

[117]  S. Donell,et al.  The role of chondrocyte senescence in osteoarthritis , 2002, Aging cell.

[118]  L. Elmore,et al.  Adriamycin-induced Senescence in Breast Tumor Cells Involves Functional p53 and Telomere Dysfunction* , 2002, The Journal of Biological Chemistry.

[119]  Wenyi Wei,et al.  Role of p21 in Apoptosis and Senescence of Human Colon Cancer Cells Treated with Camptothecin* , 2002, The Journal of Biological Chemistry.

[120]  Soyoung Lee,et al.  A Senescence Program Controlled by p53 and p16INK4a Contributes to the Outcome of Cancer Therapy , 2002, Cell.

[121]  Shuang Huang,et al.  Sequential Activation of the MEK-Extracellular Signal-Regulated Kinase and MKK3/6-p38 Mitogen-Activated Protein Kinase Pathways Mediates Oncogenic ras-Induced Premature Senescence , 2002, Molecular and Cellular Biology.

[122]  M. Manns,et al.  Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[123]  S. Joel,et al.  DNA damage is able to induce senescence in tumor cells in vitro and in vivo. , 2002, Cancer research.

[124]  Stephen N. Jones,et al.  p53 mutant mice that display early ageing-associated phenotypes , 2002, Nature.

[125]  J. Mestan,et al.  Skp2 is oncogenic and overexpressed in human cancers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[126]  H. Dvorak,et al.  Differential expression of thymosin β‐10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[127]  D. Kurz,et al.  Cellular Senescence After Single and Repeated Balloon Catheter Denudations of Rabbit Carotid Arteries , 2001, Arteriosclerosis, thrombosis, and vascular biology.

[128]  J. D. Benson,et al.  Papillomavirus E2 induces senescence in HPV‐positive cells via pRB‐ and p21CIP‐dependent pathways , 2000, The EMBO journal.

[129]  D. Kurz,et al.  Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. , 2000, Journal of cell science.

[130]  D. DiMaio,et al.  Rapid induction of senescence in human cervical carcinoma cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[131]  G. Bratthauer,et al.  Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. , 2000, Cancer research.

[132]  D. Louis,et al.  Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. , 1999, The American journal of pathology.

[133]  D. Shelton,et al.  Microarray analysis of replicative senescence , 1999, Current Biology.

[134]  E. Kandel,et al.  A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. , 1999, Cancer research.

[135]  J. Griffith,et al.  Mammalian Telomeres End in a Large Duplex Loop , 1999, Cell.

[136]  S. Lowe,et al.  Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. , 1998, Genes & development.

[137]  N. Dyson,et al.  pRB plays an essential role in cell cycle arrest induced by DNA damage. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[138]  A. Brenner,et al.  Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation , 1998, Oncogene.

[139]  F. Zindy,et al.  Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging , 1997, Oncogene.

[140]  R. Reddel,et al.  Telomere dynamics and telomerase activity in in vitro immortalised human cells. , 1997, European journal of cancer.

[141]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[142]  A. Newton,et al.  Protein Kinase C: Structure, Function, and Regulation (*) , 1995, The Journal of Biological Chemistry.

[143]  C Roskelley,et al.  A biomarker that identifies senescent human cells in culture and in aging skin in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[144]  B. Ames,et al.  Oxidative DNA damage and senescence of human diploid fibroblast cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[145]  G. Wahl,et al.  DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. , 1994, Genes & development.

[146]  B. Ames,et al.  Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[147]  D. Schadendorf,et al.  IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. , 1993, Journal of immunology.

[148]  R. Pignolo,et al.  Replicative senescence of human fibroblast-like cells in culture. , 1993, Physiological reviews.

[149]  K. Kinzler,et al.  The multistep nature of cancer. , 1993, Trends in genetics : TIG.

[150]  R. Derynck,et al.  Effects of MGSA/GRO alpha on melanocyte transformation. , 1991, Oncogene.

[151]  C. Harley,et al.  Telomeres shorten during ageing of human fibroblasts , 1990, Nature.

[152]  Carol W. Greider,et al.  Identification of a specific telomere terminal transferase activity in tetrahymena extracts , 1985, Cell.

[153]  A M Olovnikov,et al.  A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. , 1973, Journal of theoretical biology.

[154]  L. Hayflick,et al.  The serial cultivation of human diploid cell strains. , 1961, Experimental cell research.

[155]  K. Schulze-Osthoff,et al.  Enhanced killing of therapy‐induced senescent tumor cells by oncolytic measles vaccine viruses , 2014, International journal of cancer.

[156]  Rugang Zhang,et al.  Detection of senescence-associated heterochromatin foci (SAHF). , 2013, Methods in molecular biology.

[157]  M. Hayat Tumor Dormancy, Quiescence, and Senescence, Volume 1 , 2013, Tumor Dormancy and Cellular Quiescence and Senescence.

[158]  A. Senderowicz,et al.  S-Phase-specific activation of PKC alpha induces senescence in non-small cell lung cancer cells. , 2008, The Journal of biological chemistry.

[159]  D. DiMaio,et al.  Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. , 2006, Aging cell.

[160]  B. Chabner,et al.  Chemotherapy and the war on cancer , 2005, Nature Reviews Cancer.

[161]  T. de Lange,et al.  Shelterin: the protein complex that shapes and safeguards human telomeres. , 2005, Genes & development.