Closure systems, implicational systems, overhanging relations and the case of hierarchical classification

Abstract Moore families and closure operators, especially those appearing in hierarchical classification, are considered here from the point of view of their related implicational systems and overhanging relations. The last ones, newly introduced here, generalize the “nesting relations” defined by Adams [J. Classification 3 (1986) 299] in the case of classification trees. Here we characterize overhanging relations by three axioms, and prove that they are in a one-to-one correspondence with Moore families. We study which properties of implicational systems and overhanging relations are general, and which are specific to hierarchical structures. We also characterize canonical implication bases of hierarchies and obtain a similar result for overhangings.

[1]  Otto Opitz,et al.  Exploratory Data Analysis in Empirical Research , 2002 .

[2]  Bernard Monjardet,et al.  The lattices of Moore families and closure operators on a finite set: A survey , 1999, Electron. Notes Discret. Math..

[3]  W. W. Armstrong,et al.  Dependency Structures of Data Base Relationships , 1974, IFIP Congress.

[4]  A. Dress,et al.  Weak hierarchies associated with similarity measures--an additive clustering technique. , 1989, Bulletin of mathematical biology.

[5]  Rudolf Wille,et al.  Subdirect decomposition of concept lattices , 1983, ICFCA.

[6]  Bernard Monjardet,et al.  The Lattices of Closure Systems, Closure Operators, and Implicational Systems on a Finite Set: A Survey , 2003, Discret. Appl. Math..

[7]  Bruno Leclerc,et al.  Biclosed Binary Relations and Galois Connections , 2001, Order.

[8]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[9]  Kirby A. Baker Lattice theory and its applications , 1995 .

[10]  E. N. Adams,et al.  N-trees as nestings: Complexity, similarity, and consensus , 1986 .

[11]  Jean-Pierre Barthélemy,et al.  NP-hard Approximation Problems in Overlapping Clustering , 2001, J. Classif..

[12]  Nathalie Caspard Étude structurelle et algorithmique de classes de treillis obtenus par duplications , 1998 .

[13]  E. N. Adams Consensus Techniques and the Comparison of Taxonomic Trees , 1972 .

[14]  Bruno Leclerc,et al.  On the Roles of Galois Connections in Classification , 2003 .

[15]  Gyula O. H. Katona,et al.  The poset of closures as a model of changing databases , 1987 .

[16]  Horst Herrlich,et al.  Galois Connections , 1985, Mathematical Foundations of Programming Semantics.

[17]  Bruno Leclerc,et al.  Consensus of classifications: the case of trees , 1998 .

[18]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[19]  G. Birkhoff,et al.  On the combination of subalgebras , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  H. Colonius,et al.  Tree structures for proximity data , 1981 .

[21]  Jean Diatta,et al.  From Apresjan Hierarchies and Bandelt-Dress Weak hierarchies to Quasi-hierarchies , 1994 .

[22]  Czeslaw Bylinski,et al.  Galois Connections , 1985, Mathematical Foundations of Programming Semantics.

[23]  C. Plott PATH INDEPENDENCE, RATIONALITY, AND SOCIAL CHOICE , 1973 .

[24]  W. Vach,et al.  Preserving consensus hierarchies , 1994 .

[25]  M. Schader,et al.  New Approaches in Classification and Data Analysis , 1994 .