Α Behavior Trees-based architecture towards operation planning in hybrid manufacturing

[1]  Christopher Iliffe Sprague,et al.  Behavior Trees in Robot Control Systems , 2021, Annu. Rev. Control. Robotics Auton. Syst..

[2]  Michael S. Lee,et al.  Building the Foundation of Robot Explanation Generation Using Behavior Trees , 2021, ACM Transactions on Human-Robot Interaction.

[3]  Sotiris Makris,et al.  Seamless human robot collaborative assembly – An automotive case study , 2018, Mechatronics.

[4]  Sotiris Makris,et al.  A method for planning human robot shared tasks , 2018, CIRP Journal of Manufacturing Science and Technology.

[5]  Klaus-Dieter Thoben,et al.  "Industrie 4.0" and Smart Manufacturing - A Review of Research Issues and Application Examples , 2017, Int. J. Autom. Technol..

[6]  Sotiris Makris,et al.  Decision making logic for flexible assembly lines reconfiguration , 2016 .

[7]  George Chryssolouris,et al.  Multi criteria assembly line design and configuration – An automotive case study , 2015 .

[8]  S. Makris,et al.  On the Selection of Ergonomics Evaluation Methods for Human Centric Manufacturing Tasks , 2022, Procedia CIRP.

[9]  S. Makris,et al.  AI-enhanced vision system for dispensing process monitoring and quality control in manufacturing of large parts , 2022, Procedia CIRP.

[10]  Z. Arkouli,et al.  AI-enhanced cooperating robots for reconfigurable manufacturing of large parts , 2021, IFAC-PapersOnLine.

[11]  S. Makris,et al.  An approach for task and action planning in Human–Robot Collaborative cells using AI , 2021 .

[12]  Sotiris Makris,et al.  On modelling and handling of flexible materials: A review on Digital Twins and planning systems , 2021 .

[13]  Peter Nyhuis,et al.  Task scheduling method for HRC workplaces based on capabilities and execution time assumptions for robots , 2020 .

[14]  Jochen Deuse,et al.  Development of a sociotechnical planning system for human-robot interaction in assembly systems focusing on small and medium-sized enterprises , 2019, Procedia CIRP.

[15]  Sotiris Makris,et al.  AI based combined scheduling and motion planning in flexible robotic assembly lines , 2019, Procedia CIRP.

[16]  Sotiris Makris,et al.  Workplace analysis and design using virtual reality techniques , 2018 .

[17]  Panagiota Tsarouchi,et al.  On a shared human-robot task scheduling and online re-scheduling , 2018 .

[18]  Sotiris Makris,et al.  Dynamic scheduling of shared human-robot manufacturing operations , 2018 .

[19]  Vera Hummel,et al.  Capability-based Task Allocation in Human-robot Collaboration , 2017 .

[20]  Lihui Wang,et al.  Human-robot collaborative assembly in cyber-physical production: Classification framework and implementation , 2017 .

[21]  Sotiris Makris,et al.  Service Oriented Architecture for Dynamic Scheduling of Mobile Robots for Material Supply , 2016 .

[22]  Sotiris Makris,et al.  Short – term Planning for Part Supply in Assembly Lines Using Mobile Robots , 2016 .

[23]  Eric T. Matson,et al.  A Realistic Decision Making for Task Allocation in Heterogeneous Multi-agent Systems , 2016, FNC/MobiSPC.

[24]  Renato Vidoni,et al.  Requirements for the Design of Flexible and Changeable Manufacturing and Assembly Systems: A SME-survey , 2016 .

[25]  Sotiris Makris,et al.  A Decision Making Framework for Human Robot Collaborative Workplace Generation , 2016 .

[26]  Csaba Kardos,et al.  Towards Feature-based Human-robot Assembly Process Planning , 2016 .

[27]  Sotiris Makris,et al.  On a Human and Dual-arm Robot Task Planning Method , 2016 .

[28]  Sotiris Makris,et al.  ROS Based Coordination of Human Robot Cooperative Assembly Tasks-An Industrial Case Study☆ , 2015 .

[29]  Shozo Takata,et al.  Human and robot allocation method for hybrid assembly systems , 2011 .