LEO-Py: Estimating likelihoods for correlated, censored, and uncertain data with given marginal distributions
暂无分享,去创建一个
[1] Columbia,et al. Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.
[2] H. Fu,et al. THE INTRINSIC SCATTER ALONG THE MAIN SEQUENCE OF STAR-FORMING GALAXIES AT z ∼ 0.7 , 2013, 1309.4093.
[3] Joseph E. Cavanaugh,et al. Handbook of Epidemiology , 2006 .
[4] Jing Wang,et al. The GALEX Arecibo SDSS survey – III. Evidence for the inside‐out formation of Galactic discs , 2010, 1011.0829.
[5] R. Gill,et al. History of applications of martingales in survival analysis. , 2010, 1003.0188.
[6] V. Springel,et al. The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics , 2018, Monthly Notices of the Royal Astronomical Society.
[7] V. Springel,et al. The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation , 2014, 1409.0009.
[8] D. Elbaz,et al. THE CONTRIBUTION OF STARBURSTS AND NORMAL GALAXIES TO INFRARED LUMINOSITY FUNCTIONS AT z < 2 , 2012, 1202.0290.
[9] A. Robotham,et al. Hyper-Fit: Fitting Linear Models to Multidimensional Data with Multivariate Gaussian Uncertainties , 2015, Publications of the Astronomical Society of Australia.
[10] S. Bamford,et al. Galaxy And Mass Assembly (GAMA): Linking Star Formation Histories and Stellar Mass Growth , 2013, 1306.2424.
[11] D. Schiminovich,et al. xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe , 2018, 1802.02373.
[12] J. Ibrahim,et al. Handbook of survival analysis , 2014 .
[13] S. Eales,et al. The Galaxy end sequence , 2016, 1611.00367.
[14] J. Bovy,et al. Data analysis recipes: Fitting a model to data , 2010, 1008.4686.
[15] Kaare Brandt Petersen,et al. The Matrix Cookbook , 2006 .
[16] S. Maddox,et al. The new galaxy evolution paradigm revealed by the Herschel surveys , 2017, 1710.01314.
[17] Dieter Kraft,et al. Algorithm 733: TOMP–Fortran modules for optimal control calculations , 1994, TOMS.
[18] Nicole A. Lazar,et al. Statistical Analysis With Missing Data , 2003, Technometrics.
[19] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[20] Christopher D. Martin,et al. The GALEX Arecibo SDSS Survey I: gas fraction scaling relations of massive galaxies and first data release , 2009, 0912.1610.
[21] G. J. Babu,et al. Statistical Methods for Astronomy , 2012, 1205.2064.
[22] J. Brian Gray,et al. Introduction to Linear Regression Analysis , 2002, Technometrics.
[23] L. Cortese,et al. xGASS: gas-rich central galaxies in small groups and their connections to cosmic web gas feeding , 2017, 1701.01754.
[24] C. Frenk,et al. Evolution of galaxy stellar masses and star formation rates in the eagle simulations , 2014, 1410.3485.
[25] G. Brammer,et al. CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.
[26] J. Doye,et al. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.
[27] A. Albert. Conditions for Positive and Nonnegative Definiteness in Terms of Pseudoinverses , 1969 .
[28] S. Brough,et al. Galaxy And Mass Assembly (GAMA): The sSFR-M* relation part I – σsSFR-M* as a function of sample, SFR indicator and environment , 2018, Monthly Notices of the Royal Astronomical Society.
[29] S. Thompson,et al. Correcting for regression dilution bias: comparison of methods for a single predictor variable , 2000 .
[30] Gilbert MacKenzie,et al. The Statistical Analysis of Failure Time Data , 1982 .
[31] Emiliano A. Valdez,et al. Understanding Relationships Using Copulas , 1998 .
[32] N. Kolev,et al. Copulas: A Review and Recent Developments , 2006 .
[33] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[34] R. Feldmann. Are star formation rates of galaxies bimodal , 2017, 1705.03014.
[35] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[36] Philip E. Davis,et al. The SFR–M* Correlation Extends to Low Mass at High Redshift , 2018, The Astrophysical Journal.
[37] N. Caplar,et al. Stochastic modelling of star-formation histories I: the scatter of the star-forming main sequence , 2019, Monthly Notices of the Royal Astronomical Society.
[38] J. Starck,et al. The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.
[39] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[40] Paul A. Bekker,et al. THE POSITIVE SEMIDEFINITENESS OF PARTITIONED MATRICES , 1988 .
[41] B. Kelly. Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.
[42] A. Cimatti,et al. Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.
[43] Roger B. Nelsen,et al. Copulas, Characterization, Correlation, and Counterexamples , 1995 .
[44] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[45] J. Kalbfleisch,et al. The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .
[46] Travis E. Oliphant,et al. Guide to NumPy , 2015 .
[47] W. D. Ray. 4. Modelling Survival Data in Medical Research , 1995 .
[48] J. Schafer,et al. Missing data: our view of the state of the art. , 2002, Psychological methods.
[49] Wes McKinney,et al. Data Structures for Statistical Computing in Python , 2010, SciPy.
[50] Thomas J. Loredo,et al. Bayesian astrostatistics: a backward look to the future , 2012, 1208.3036.
[51] P. Hopkins,et al. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.